Spring 2007

Name:

Show all your work and justify all your answers!!!

- 1. (12 points) Let V be a finite dimensional vector space over \mathbb{C} and $T:V\to V$ a linear transformation, such that $T^r=1$, for some positive integer r. Prove that T is diagonalizable.
- 2. (12 points) Let $A = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D, both with entries in \mathbb{C} , such that $P^{-1}AP = D$.
- 3. (18 points)
 - (a) Find an orthonormal basis of \mathbb{R}^2 , which exhibit the principal axes of the quadratic form $Q(x,y) = 17x^2 + 12xy + 8y^2$.
 - (b) Find the matrix P of a rotation of \mathbb{R}^2 , and a diagonal matrix D, such that $Q(x,y)=(x,y)PD(P^t)\begin{pmatrix}x\\y\end{pmatrix}$. Explain why the P you found is a matrix of a rotation and why the above equality holds.
 - (c) Use your work above to sketch the graph of $17x^2 + 12xy + 8y^2 = 5$, clearly indicating the principal axes and the coordinates of their points of intersection with the graph.
 - (d) Find an orthogonal (but not orthonormal) basis $\beta = \{v_1, v_2\}$ of \mathbb{R}^2 , such that the matrix of Q with respect to β is the identity matrix. *Hint: Use your diagonalization in part* βb .
- 4. (22 points) Parts 4c to 4f below are independent of parts 4a and 4b.
 - (a) Let u_1 and u_2 be two unit vectors in \mathbb{R}^3 and let R_{u_i} be the reflection

$$R_{u_i}(v) = v - 2(u_i, v)u_i$$

of \mathbb{R}^3 with respect to the plane u_i^{\perp} orthogonal to u_i . Prove that the composition $R_{u_2} \circ R_{u_1}$ is a rotation of \mathbb{R}^3 .

- (b) Let $u_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, and $A := \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Show that $R_{u_2} \circ R_{u_1}$ is equal to multiplication by the matrix A.
- (c) Find a unit vector v_1 , which spans the axis of the rotation of \mathbb{R}^3 with matrix A given in part 4b.
- (d) Set $v_2 := u_1$, where u_1 is the vector in part 4b. Complete it to an orthonormal basis $\{v_2, v_3\}$ of the plane v_1^{\perp} orthogonal to the axis of the rotation A.
- (e) Find the matrix P of a rotation of \mathbb{R}^3 , whose second column is the vector u_1 in part 4b, such that $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$ is in the normal form of the Structure Theorem for Orthogonal Transformations. *Hint: The columns of P should be a suitable orthonormal basis of* \mathbb{R}^3 *and* $\det(P) = 1$.

- (f) Show that the angle of the rotation A is $\theta = \frac{-2\pi}{3}$.
- 5. (16 points) Find the solution $(y_1(t), y_2(t))$ of the system

$$\begin{array}{rcl} \frac{\partial y_1}{\partial t} & = & y_1 & + & y_2 \\ \frac{\partial y_2}{\partial t} & = & -y_1 & + & 3y_2 \end{array}$$

satisfying $y_1(0) = 0$ and $y_2(0) = 1$. Hint: The matrix A of the system satisfies $P^{-1}AP = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, where $P = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

- 6. (20 points) Let $A = \begin{pmatrix} 2 & 0 & 0 \\ -7 & -1 & 4 \\ -2 & -1 & 3 \end{pmatrix}$ and work over the field \mathbb{R} of real numbers.
 - (a) Show that the characteristic polynomial of A is $(x-1)^2(x-2)$.
 - (b) Find a basis for each eigenspace of A.
 - (c) Check that each vector you found in part 6b is indeed an eigenvector!
 - (d) Find the minimal polynomial of A. Justify your answer!
 - (e) Find a basis for each V_i in the Primary Decomposition $\mathbb{R}^3 = V_1 \oplus V_2$ with respect to A.
 - (f) Find the elementary divisors of A. Carefully justify your answer!
 - (g) Find the Jordan canonical form of A.
 - (h) Find an invertible matrix P, such that $P^{-1}AP$ is in Jordan canonical form. Describe your method in complete sentences! Credit will not be given to a solution found by trial and error.