Math $545 \quad$ Final Exam \quad Spring 2007

Name: \qquad

Show all your work and justify all your answers!!!

1. (12 points) Let V be a finite dimensional vector space over \mathbb{C} and $T: V \rightarrow V$ a linear transformation, such that $T^{r}=1$, for some positive integer r. Prove that T is diagonalizable.
2. (12 points) Let $A=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$. Find an invertible matrix P and a diagonal matrix D, both with entries in \mathbb{C}, such that $P^{-1} A P=D$.
3. (18 points)
(a) Find an orthonormal basis of \mathbb{R}^{2}, which exhibit the principal axes of the quadratic form $Q(x, y)=17 x^{2}+12 x y+8 y^{2}$.
(b) Find the matrix P of a rotation of \mathbb{R}^{2}, and a diagonal matrix D, such that $Q(x, y)=(x, y) P D\left(P^{t}\right)\binom{x}{y}$. Explain why the P you found is a matrix of a rotation and why the above equality holds.
(c) Use your work above to sketch the graph of $17 x^{2}+12 x y+8 y^{2}=5$, clearly indicating the principal axes and the coordinates of their points of intersection with the graph.
(d) Find an orthogonal (but not orthonormal) basis $\beta=\left\{v_{1}, v_{2}\right\}$ of \mathbb{R}^{2}, such that the matrix of Q with respect to β is the identity matrix. Hint: Use your diagonalization in part $3 b$.
4. (22 points) Parts 4 c to 4 f below are independent of parts 4 a and 4 b .
(a) Let u_{1} and u_{2} be two unit vectors in \mathbb{R}^{3} and let $R_{u_{i}}$ be the reflection

$$
R_{u_{i}}(v)=v-2\left(u_{i}, v\right) u_{i}
$$

of \mathbb{R}^{3} with respect to the plane u_{i}^{\perp} orthogonal to u_{i}. Prove that the composition $R_{u_{2}} \circ R_{u_{1}}$ is a rotation of \mathbb{R}^{3}.
(b) Let $u_{1}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right), u_{2}=\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$, and $A:=\left(\begin{array}{ccc}0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Show that $R_{u_{2}} \circ R_{u_{1}}$ is equal to multiplication by the matrix A.
(c) Find a unit vector v_{1}, which spans the axis of the rotation of \mathbb{R}^{3} with matrix A given in part 4b.
(d) Set $v_{2}:=u_{1}$, where u_{1} is the vector in part 4 b . Complete it to an orthonormal basis $\left\{v_{2}, v_{3}\right\}$ of the plane v_{1}^{\perp} orthogonal to the axis of the rotation A.
(e) Find the matrix P of a rotation of \mathbb{R}^{3}, whose second column is the vector u_{1} in part 4 b , such that $P^{-1} A P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right)$ is in the normal form of the Structure Theorem for Orthogonal Transformations. Hint: The columns of P should be a suitable orthonormal basis of \mathbb{R}^{3} and $\operatorname{det}(P)=1$.
(f) Show that the angle of the rotation A is $\theta=\frac{-2 \pi}{3}$.
5. (16 points) Find the solution $\left(y_{1}(t), y_{2}(t)\right)$ of the system

$$
\begin{aligned}
& \frac{\partial y_{1}}{\partial t}=y_{1}+y_{2} \\
& \frac{\partial y_{2}}{\partial t}=-y_{1}+3 y_{2}
\end{aligned}
$$

satisfying $y_{1}(0)=0$ and $y_{2}(0)=1$. Hint: The matrix A of the system satisfies $P^{-1} A P=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, where $P=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$.
6. (20 points) Let $A=\left(\begin{array}{ccc}2 & 0 & 0 \\ -7 & -1 & 4 \\ -2 & -1 & 3\end{array}\right)$ and work over the field \mathbb{R} of real numbers.
(a) Show that the characteristic polynomial of A is $(x-1)^{2}(x-2)$.
(b) Find a basis for each eigenspace of A.
(c) Check that each vector you found in part 6 b is indeed an eigenvector!
(d) Find the minimal polynomial of A. Justify your answer!
(e) Find a basis for each V_{i} in the Primary Decomposition $\mathbb{R}^{3}=V_{1} \oplus V_{2}$ with respect to A.
(f) Find the elementary divisors of A. Carefully justify your answer!
(g) Find the Jordan canonical form of A.
(h) Find an invertible matrix P, such that $P^{-1} A P$ is in Jordan canonical form. Describe your method in complete sentences! Credit will not be given to a solution found by trial and error.

