Let $A$ be the matrix $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ -3 & 1 & 5\end{array}\right)$. In this problem you are asked to work out explicitly for the matrix $A$ the construction that is carried out in the proof of the Primary Decomposition Theorem 23.9 page 197 in Curtis's textbook.

1. Show that the characteristic polynomial of $A$ is $h(x)=(x-2)^{2}(x-5)$.
2. Show that the minimal polynomial $m(x)$ of $A$ is equal to its characteristic polynomial.
3. Set $p_{1}(x)=(x-2), e_{1}=2, p_{2}(x)=(x-5), e_{2}=1$, so that $m(x)=p_{1}(x)^{e_{1}} p_{2}(x)^{e_{2}}$. Set $q_{1}(x):=\frac{m(x)}{p_{1}(x)^{e^{1}}}=(x-5)$, and $q_{2}(x):=\frac{m(x)}{p_{2}(x)^{e^{2}}}=(x-2)^{2}$.
Find polynomials $a_{1}(x)$ and $a_{2}(x)$ satisfying the equation

$$
\begin{equation*}
1=a_{1}(x) q_{1}(x)+a_{2}(x) q_{2}(x) \tag{1}
\end{equation*}
$$

Hint: You can find $a_{1}(x)=a x+b$ of degree 1 and and $a_{2}(x)=c$ a constant polynomial. Simply regard the coefficients $a, b$, and $c$ as variables, and equate coefficients in the polynomial equation (1) to get three linear equations in three unknowns.
4. Set $f_{i}(x)=a_{i}(x) q_{i}(x)$ and compute

$$
E_{i}:=f_{i}(A)
$$

$i=1,2$. Show that $E_{1} E_{2}=0$. Note that $E_{1}$ and $E_{2}$ commute, so $E_{2} E_{1}=0$ as well, and $E_{1}+E_{2}=I$, by construction. Hence, $\left(E_{i}\right)^{2}=E_{i}$ and

$$
\begin{equation*}
\mathbb{R}^{3}=E_{1}\left(\mathbb{R}^{3}\right) \oplus E_{2}\left(\mathbb{R}^{3}\right) \tag{2}
\end{equation*}
$$

is a direct sum decomposition, by Lemma 23.6.
5. Compute a basis $\left\{v_{1}\right\}$ of $\operatorname{ker}\left(p_{1}(A)\right)$. Then extend it to a basis $\left\{v_{1}, v_{2}\right\}$ for $\operatorname{ker}\left(p_{1}(A)^{e_{1}}\right)$ and show that the latter kernel is equal to $E_{1}\left(\mathbb{R}^{3}\right)$.
6. Compute a basis $\left\{v_{3}\right\}$ of $\operatorname{ker}\left(p_{2}(A)^{e_{2}}\right)$ and show that the kernel is equal to $E_{2}\left(\mathbb{R}^{3}\right)$.
7. Observe that the direct sum decomposition displayed in equation (2) is translated via the equalities in parts 5 and 6 to the direct sum decomposition

$$
\mathbb{R}^{3}=\operatorname{ker}\left(p_{1}(A)^{e_{1}}\right) \oplus \operatorname{ker}\left(p_{2}(A)^{e_{2}}\right)
$$

8. Set $\beta:=\left\{v_{1}, v_{2}, v_{3}\right\}$. It is a basis of $\mathbb{R}^{3}$, by the above direct sum decomposition. Compute the $\beta$-matrix $[A]_{\beta}$ of $A$. It should be block-diagonal with two blocks, each of which is upper triangular.

Answer: $E_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 1\end{array}\right), \quad[A]_{\beta}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right)$.
The entry of $[A]_{\beta}$ in the first row and second column depends on your choice of the basis $\left\{v_{1}, v_{2}\right\}$. As long as its non-zero, your answer is correct.

