
Math 545 Midterm 2 Fall 2011

Name:

Solve 4 out of the following 5 problems. Indicate below which problem you wish not
be graded. If you fail to do so, problem 5 -will not be graded.
Please do not grade problem _ .
Show all your work and justify all your answers!!!
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1. (25 points) Set A := 1 0 0

(a) Find the characteristic polynomial h(x) of A. Show your work!

o

(b) Find the minimal polynomial m(x) of A in the polynomial ring C[x\. Do not
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forget to carefully justify your answer!
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(c) Show that A is not similar to a diagonal matrix in M

(d) Find a basis of C3 consisting of eigenvectors of A. Hint: Use the notation //
for the third root of unity cos(2vr/3) + zsin(2yr/3). Express your answer in
terms of powers of r\, in order to simplify thej notation and the computations.
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(e) Find an invertible matrix P and a diagonal matrix D, both in M3(C), such
that P-1AP = D.
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2. (25 points) Let V be a finite dimensional vector space over R with an inner product
and T : V — > V an orthogonal transformation. Prove that det(T) is equal to 1 or
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3. (25 points) Let V be an n dimensional vector space over M with an inner product,
where n > 3. Let u\ and u^ be two unit vectors in V satisfying (u\,u-i) = 0. Let
T : V — » V be the composition T = RU1RU2, where Ru. is the reflection of V with
respect to the subspace uf orthogonal to u,. Recall that RUi is given by

Rui(v] = v-2(ui,v)ui.

(a) Show that RU1 and RU2 commute. In other words, use the assumption
(ui.u<>) = 0 to prove the equality RUlRU2(v) = Ru,2RUi(v). for all v in V.

(b) Show that T2 = 1. Hint: Show first that fl£. = 1

(c) Sho\\" that T is diagonalizable.
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(d) Show that {iti,u2} span the -1 eigenspace of T

V = T t i/j = ff UL Ki^M - V -
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-i&t (e) Find the characteristic polynomial of T. Justify your answer!
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4. (25 points) Let V be a vector space and T : V — > V an invertible linear transfor-
mation.

(a) Show that if a is an eigenvalue of T. then a ^ 0 and a"1 is an eigenvalue of
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(b) Show that if T is diagonalizable, then so is T x.
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5. (25 points) Let JF(R) be the vector space of functions from M to M with derivatives
of all orders and V the subspace spanned by (cos(x), sin(x), cos(2x), sin(2x)}. Let
T : V — > V be the differentiation operator. T(f) = /'.

(a) Show that the matrix [T]a of T in the basis 13 := (cos(x). sin(x). cos(2x). sin(2.r)}
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(b) Find the characteristic polynomial h(x) of T. Show your work!
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(c) Find the minimal polynomial m(x) of T. Justify your answer!
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(d) Show that the matrix [T]3 is diagonalizable in A/4(C), but not in A/
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(e) Show that the primary decomposition of V is a direct sum V = V\ @V<2 of two
subspaces and find a basis for each of V\ and V-z (consisting of functions
in V). Note that V is a vector space over R. x-> o


