Name: \qquad
Solve 4 out of the following 5 problems. Indicate below which problem you wish not be graded. If you fail to do so, problem 5 will not be graded.
Please do not grade problem \qquad .
Show all your work and justify all your answers!!!

1. (25 points) $\underset{5 \text { pts }}{ } \operatorname{Set}:=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
(a) Find the characteristic polynomial $h(x)$ of A. Show your work!

$$
\operatorname{det}\left(\begin{array}{ccc}
-x & 0 & 1 \\
1 & -x & 0 \\
0 & 1 & -x
\end{array}\right)=-x\left(x^{2}\right)+1=-\left(x^{3}-1\right)
$$

5 pto
(b) Find the minimal polynomial $m(x)$ of A in the polynomial ring $\mathbb{C}[x]$. Do not forget to carefully justify your answer!

$$
A^{\alpha}=\left(\begin{array}{lll}
0 & \text { forget to o } \\
0 & 0 \\
1 & 0 & 1 \\
1 & 0
\end{array}\right) \text {. }
$$

since their fort columns form the standard boris of \mathbb{P} ? The set $\left\{I, A, A^{2}, A_{1}^{3}\right\}$ is linearly dependent. Hence, degree $(m(x))=3$. Now $\quad f(x)=x^{3}-1$ satisfies $f(A)=0$, Hence $m(x) \mid f(x)$. Both $f(x)$ and, $m(x)$ are moxie of degree 3. Thess $m(x)=f(x)$.
Method 2; $h(x)$ has 3 distant roots in \mathbb{C} and
each eigenvalue must be a root of $m(x)$. Hence $h(x)$ dares $m(x), 1$ But $h(A)=A^{3}-I=0$. Hence $m(x) / h(x)$. Thus, $m(x)=h(x)$,

5 pto
(c) Show that A is not similar to a diagonal matrix in $M_{3}(\mathbb{R})$.
$x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ 。
$x^{2}+x+1$ is prime in $\mathbb{R}[x]$, since $\Delta=1-4<0$,
Heme, $m(x)$ does not factor as a product of
linear fortars in $R[x]$. By a theorem, $m(x)$ is diagonal; is
\Leftrightarrow it factors \& a product of lines Parlors with distinct sorts,
(d) Find a basis of \mathbb{C}^{3} consisting of eigenvectors of A. Hint: Use the notation η for the third root of unity $\cos (2 \pi / 3)+i \sin (2 \pi / 3)$. Express your answer in terms of powers of η, in order to simplify the notation and the computations.

$$
\left(x^{3}-1\right)=(x-1)(x-\eta)\left(x-\eta^{2}\right) \quad-\frac{1}{2}
$$

1-eigenspace:

$$
\frac{1 \text {-eigenspace: }}{A-I=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right) \quad \operatorname{ler}(A-J)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}}
$$

η-eigenspace:

$$
\begin{aligned}
& \eta \text {-elgenspace! } \\
& A-\eta I=\left(\begin{array}{ccc}
-\eta & 0 & 1 \\
1 & -\eta & 0 \\
0 & 1 & -\eta
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -\eta & 0 \\
0 & -\eta^{2} & 1 \\
0 & 1 & -\eta
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -\eta & 0 \\
0 & 1 & -\eta \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -\eta^{2} \\
0 & 1 & -\eta \\
0 & 0 & 0
\end{array}\right) \\
& \operatorname{rer}(A-\eta I)=\operatorname{span}\left\{\left(\begin{array}{l}
\eta^{2} \\
\eta^{2} \\
1
\end{array}\right)\right\} \\
& \underset{V_{2}}{ }
\end{aligned}
$$

η^{2}-eigenspace:

$$
\begin{aligned}
& \frac{\eta^{2} \text {-eigenspace: }}{A-\eta^{2} I=\left(\begin{array}{ccc}
-\eta^{2} & 0 & 1 \\
1 & -\eta^{2} & 0 \\
0 & 1 & -\eta^{2}
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -\eta^{2} & 0 \\
0 & -\eta & 1 \\
0 & 1 & -\eta^{2}
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -\eta \\
0 & 1 & -\eta^{2} \\
0 & 0 & 0
\end{array}\right)} \\
& \quad \text { ger }\left(A-\eta^{2} T\right)
\end{aligned}
$$

ger $\left(A-\eta^{2} I\right)=\operatorname{span}\left\{\left(\begin{array}{c}\eta \\ \eta_{v_{3}^{2}}^{2} \\ 1\end{array}\right)\right\}$
EigenBaris $\left\{v_{1}, v_{2}, v_{3}\right\}$,

$$
5 \mathrm{pto}
$$

(e) Find an invertible matrix P and a diagonal matrix D, both in $M_{3}(\mathbb{C})$, such that $P^{-1} A P=D$.

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & r^{2} & y \\
1 & y_{1} & y_{1}^{2} \\
1 & 1 & 1
\end{array}\right) \\
& D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \eta & 0 \\
0 & 0 & \eta^{2}
\end{array}\right)
\end{aligned}
$$

2. (25 points) Let V be a finite dimensional vector space over \mathbb{R} with an inner product and $T: V \rightarrow V$ an orthogonal transformation. Prove that $\operatorname{det}(T)$ is equal to 1 or
By a^{-1}. Theorem we row that
This orthogonal \Leftrightarrow far some onthon armal basis B $A_{i}^{\text {deb }}=[T]_{B}$ is an onthogenal matrix, $i, e_{1}, A^{t}=A_{0}^{-1}$

Now $\operatorname{det}(T)^{\text {by defimixim }}:=\operatorname{det}\left([T]_{B}\right)=\operatorname{det}(A)$.
It remains to show that $\operatorname{det}(A)=1$, if $A^{t}=A_{3}^{-1}$

$$
\begin{aligned}
& \operatorname{det}\left(A^{t} A\right)=\operatorname{det}\left(A^{t}\right) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(A) \\
& \operatorname{ded}(I)=1
\end{aligned}
$$

So $\operatorname{det}(A)^{2}=1$,
So $\operatorname{det}(A)= \pm 1$.
3. (25 points) Let V be an n dimensional vector space over \mathbb{R} with an inner product, where $n \geq 3$. Let u_{1} and u_{2} be two unit vectors in V satisfying $\left(u_{1}, u_{2}\right)=0$. Let $T: V \rightarrow V$ be the composition $T=R_{u_{1}} R_{u_{2}}$, where $R_{u_{i}}$ is the reflection of V with respect to the subspace u_{i}^{\perp} orthogonal to u_{i}. Recall that $R_{u_{i}}$ is given by

$$
R_{u_{i}}(v)=v-2\left(u_{i}, v\right) u_{i}
$$

(a) Show that $R_{u_{1}}$ and $R_{u_{2}}$ commute. In other words, use the assumption

$$
\begin{aligned}
R u_{1} R u_{2}(v) & =R_{u_{1}}\left(v-2\left(u_{2}, v\right) u_{2}\right)=\left[v-2\left(u_{2}, v\right) u_{2}\right]-2\left(u_{1},\left[v-2\left(u_{2}, v\right) u_{2}\right]\right) u_{1} \\
& =v-2\left(u_{2}, v\right) u_{2}-2\left(u_{1}, v\right) u_{1}+4\left(u_{2}, v\right)\left(u_{1}, u_{2}\right) u_{1}= \\
& =v-2\left(u_{2}, v\right) u_{2}-2\left(u_{1}, v\right) u_{1}
\end{aligned}
$$

The above expression is symmetric in u_{1}, u_{2}. Interchanging u_{1} and u_{2} we see that
$R_{u_{2}} R_{u_{1}}(v)=$ same expression.
Hence, $R u_{1} R u_{2}=R u_{2} R u_{1}$.
(b) Show that $T^{2}=1$. Hint: Show first that $R_{u_{i}}^{2}=1$.

$$
\begin{aligned}
& R u_{1}\left(R u_{1}(v)\right)=\left[v-2\left(u_{1}, v\right) u_{1}\right]-2\left(u_{1},\left[v-2\left(u_{1}, v\right) u_{1}\right]\right) u_{1}= \\
& =v-2\left(u_{1}, v\right) u_{1}-2\left(u_{1}, v\right) u_{1}+4 \underbrace{(\underbrace{u_{1}, u_{1}}_{1})\left(u_{1}, v\right) u_{1}=v . ~}_{-4\left(u_{1}, v\right) u_{1}} \\
& \text { Thus, } R_{u_{1}}^{2}=1 \text {. }
\end{aligned}
$$

so $T^{2}=\left(R_{u_{1}} R u_{2}\right)\left(R u_{1} R u_{2}\right)=\frac{\text { by }}{\left.=1 R_{u_{1}} R u_{1}\right)}\left(R_{u_{2}} R_{u_{2}}\right)=1 \cdot 1=1$
(c) Show that T is diagonalizable.

Let $f(x)=x^{2}-1$. Then $f(T)=0$. Thus, the minimal polynomial $m(x)$ of T divides $x^{2}-1$. But $x^{2}-1=(x-1)(x+1)$ is the product of linear terms with distimet roots. Hence, $m(x)$ is one of $\left(\frac{x-1}{4}\right),(x+1)$, or $(x-1)(x+7)$ and is abr a product of linear terms with distinct roots. By a Theorem, T is diagonalizable.
(d) Show that $\left\{u_{1}, u_{2}\right\}$ span the -1 eigenspace of T. Assume that $T(V)=-V_{0}$
$-v=T(v)=R u_{1} R_{u_{2}}(v)=v-2\left(u_{1}, v\right) u_{1}-2\left(u_{2}, v\right) u_{2}$. Solve for V,
to get,$v=\left(u_{1}, v\right) u_{1}+\left(u_{2}, v\right) u_{2}$.
Thur, v is a lines combination of U_{1} and U_{2}.
Conversely, $T\left(u_{1}\right)=u_{1}-2(\underbrace{u_{1}, u_{1}}) u_{1}-2(\underbrace{u_{\alpha}}, u_{1}) u_{2}=-u_{1}$
and similarly, $T\left(u_{2}\right)=-u_{2}$ 。
Thus, u_{1} and u_{2} are eigenvalues with eigonvalue-1.

Method 1:
(e) Find the characteristic polynomial of T. Justify your answer!

Extend $\left\{u_{1}, u_{2}\right\}$ to an orthonormal bass $B=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ of V_{0} Far $j^{\prime}>2, u_{j}$ is orthogonal to both u_{1} and u_{2}. Thus,
$R_{u_{1}}\left(u_{j}\right)=u_{j}-2\left(u_{1}, u_{j}\right) u_{1}=u_{j}$ and similarly, $R_{u_{2}}\left(u_{j}\right)=u_{j}$,
Thu*; $T\left(u_{j}\right)=R_{u_{1}}{ }^{\circ}\left(R_{u_{2}}\left(u_{j}\right)\right)=R_{u_{1}}\left(u_{j}\right)=u_{j}$, for $\quad j>2$ 。
so u_{3}, \ldots, u_{n} are eigenvectors of T with eigenvalue

1. Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& {[T]_{B}=(\begin{array}{ll}
-1 & \\
& \\
& \\
\hline
\end{array} \underbrace{m-2}_{1}) \text { is diagonal. }} \\
& \\
&
\end{aligned}
$$

The characlerster poly. ${ }^{1}$ is thus ${ }^{h(x)}(x+1)^{2}(x-1)^{M-2}$ Method 2: $m(x)$ and $h(x)$ have the same roots. $m(x)=(x-1)(x+1)$. Thus $h(x)=(x+1)^{d_{1}}(x-1)^{d_{2}}$ The power) d_{1} is α, by port c_{9} and $d_{1}+d_{2}=\operatorname{deg}(h)=M$. Thus, $d_{2}=M-2$.
4. (25 points) Let V be a vector space and $T: V \rightarrow V$ an invertible linear transformation.
(a) Show that if α is an eigenvalue of T, then $\alpha \neq 0$ and α^{-1} is an eigenvalue of T^{-1}.
If α is an eigenvalue of T, then there exists a non-zero vector v such that $T(v)=\alpha v$.
If $\alpha=0$, then $T(V)=0 . v=0$ and so V belongato $\operatorname{ker}(T)$, which implies that $\operatorname{ser}(T) \neq 0$.
T is invertible, then $R e r(T)=0$ and so $\alpha \neq 0$.
Apply T^{-1} to both sides of $T(v)=\alpha v$ to get $v=T^{-1}(\alpha v)=\alpha T^{-1}(v)$. so

$$
T^{-1}(v)=\alpha^{-1} v .
$$

Thus, if v is an eigenvector of T with eigenvalue α, then v is an eigenvector " T^{-1} " $" \alpha_{0}^{-1}$ 8 (pto (b) Show that if T is diagonalizable, then so is T^{-1} :

Assume that. T is diagonalizable. Then there existo a basis $\mathcal{B}=\left\{v_{1}, v_{\alpha}, \ldots\right\}$ of $V_{\text {, }}, \ldots$ such that every v_{i} is an eigenvector of T. part (a) implies that each v_{i} is also an eigenvector of T^{-1}. Thus, β is aka a basis consisting of eigenvectors of $T-1$. thence, $T-1$ is diagonalizable.
5. (25 points) Let $\mathcal{F}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} with derivatives of all orders and V the subspace spanned by $\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\}$. Let $T: V \rightarrow V$ be the differentiation operator, $T(f)=f^{\prime}$.
(a) Show that the matrix $[T]_{\beta}$ of T in the basis $\beta:=\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\}$

$$
[T]_{B}=\left([-\sin (x)]_{B}\left[\begin{array}{cccc}
\text { of } V \text { is } & {\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
2
\end{array}\right.} \\
0 & -2 & 0
\end{array}\right),[-\alpha \sin (\alpha x)]_{B},[2 \cos (\partial x)]\right)=
$$

$$
=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right)
$$

(b) Find the characteristic polynomial $h(x)$ of T. Show your work!

$$
\begin{aligned}
h(x) & =\operatorname{det}\left([T]_{B}-x I\right)=\operatorname{det}\left(\begin{array}{cccc}
-x & 1 & 0 & 0 \\
-1 & -x & 0 & 0 \\
0 & 0 & -x & 2 \\
0 & 0 & -2 & -x
\end{array}\right) \\
& =\left(x^{2}+1\right)\left(x^{2}+4\right)_{0}
\end{aligned}
$$

(c) Find the minimal polynomial $m(x)$ of T. Justify your answer!

Method 1: Won ring over the field \mathbb{R} (since V is a vector space over \mathbb{R}^{2}).

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{cccc}
-1 & -1 & -4 & \\
& -4 & -4
\end{array}\right), \quad A^{2}+I=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right) \\
& A^{2}+4 I=\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned} \quad . \quad \underbrace{\left(A^{2}+I\right)\left(A^{2}+4 I\right)}_{h(A) 0}=0 .
$$

We see that $m(x)$ divides $h(x)=\left(x^{2}+1\right)\left(x^{2}+4\right)$. Now $\left(x^{2}+1\right)$ and $\left(x^{2}+4\right)$ are prime in $\mathbb{P}[x]$. Hence, $m(x)$ is one of $\left(x^{2}+1\right),\left(x^{2}+4\right),\left(x^{2}+1\right)\left(x^{2}+4\right)$. Since $A^{2}+4 I \neq 0$ and $A^{2}+I \neq 0$, then $m(x)=\left(x^{2}+1\right)\left(x^{2}+4\right)$
Method 2: Were over (1 , and observe that $h(x)=(x-i)(x+i)(x-2 i)$ fractions into 44 line as fattro with dirlingt roots. $\quad Z\left(x+2 i^{i}\right)$.
$A_{i}=[T]_{B}$ is nat diagonalizable in $M_{H}(\mathbb{R})$, since its minimal poly is NOT a product of lineas terms in $\mathbb{R}[x]$ 。
$[T]_{B}$ is diagonalizable in $M_{N}(\mathbb{C})$, $\sin (e$ $m(x)=(x-i)(x+i)(x-2 i)(x+2 i)$ is a product of leon factors with distinct roots
(e) Show that the primary decomposition of V is a direct sum $V=V_{1} \oplus V_{2}$ of two subspaces and find a basis for each of V_{1} and V_{2} (consisting of functions in $V)$. Note that V is a vector space over \mathbb{R}
$m(x)=p_{1}(x) \cdot 0$. Note that V is a vector space over $(x)=x^{2}+1, \quad P_{2}(x)=x^{2}+\%_{0}$
The primary decomposition is

$$
\begin{aligned}
& V=\underbrace{\operatorname{ker}\left(T^{\alpha}+1\right)}_{V_{1}} \rightarrow \underbrace{\operatorname{Rer}\left(T^{2}+4 N\right)}_{\sqrt{2}} . \\
& \operatorname{erar}\left([T]_{B}^{2}+I\right)^{1}=\operatorname{rer}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & -3
\end{array}\right)^{\sqrt{2}}=\operatorname{span}\left\{\begin{array}{ll}
{[\prime \cos (x)]_{B}} \\
e_{1} & e_{2} \\
e_{2}
\end{array}\right\}
\end{aligned}
$$

Hence, $\operatorname{rer}\left(T^{2}+\mathbb{1}\right)=\operatorname{span}\{\cos (x), \sin (x)\}$
basis for V_{1}

$$
\operatorname{rer}\left([T]_{B}^{2}+4 I\right)=\operatorname{span}\left\{e_{3}, e_{H}\right\}
$$

Hence, $\operatorname{ser}\left(T^{2}+411\right)=\operatorname{span}\{\cos (2 x), \sin (2 x)\}$ bans for $\sqrt{2}$

