Solve 4 out of the following 5 problems. Show all your work and justify all your answers!!!

- 1. (25 points) Set $A := \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (a) Find the characteristic polynomial h(x) of A. Show your work!
 - (b) Find the minimal polynomial m(x) of A in the polynomial ring $\mathbb{C}[x]$. Do not forget to **carefully** justify your answer!
 - (c) Show that A is not similar to a diagonal matrix in $M_3(\mathbb{R})$.
 - (d) Find a basis of \mathbb{C}^3 consisting of eigenvectors of A. Hint: Use the notation η for the third root of unity $\cos(2\pi/3) + i\sin(2\pi/3)$. Express your answer in terms of powers of η , in order to simplify the notation and the computations.
 - (e) Find an invertible matrix P and a diagonal matrix D, both in $M_3(\mathbb{C})$, such that $P^{-1}AP = D$.
- 2. (25 points) Let V be a finite dimensional vector space over \mathbb{R} with an inner product and $T:V\to V$ an orthogonal transformation. Prove that $\det(T)$ is equal to 1 or -1.
- 3. (25 points) Let V be an n dimensional vector space over \mathbb{R} with an inner product, where $n \geq 3$. Let u_1 and u_2 be two unit vectors in V satisfying $(u_1, u_2) = 0$. Let $T: V \to V$ be the composition $T = R_{u_1}R_{u_2}$, where R_{u_i} is the reflection of V with respect to the subspace u_i^{\perp} orthogonal to u_i . Recall that R_{u_i} is given by

$$R_{u_i}(v) = v - 2(u_i, v)u_i.$$

- (a) Show that R_{u_1} and R_{u_2} commute. In other words, use the assumption $(u_1, u_2) = 0$ to prove the equality $R_{u_1}R_{u_2}(v) = R_{u_2}R_{u_1}(v)$, for all v in V.
- (b) Show that $T^2 = 1$. Hint: Show first that $R_{u_i}^2 = 1$.
- (c) Show that T is diagonalizable.
- (d) Show that $\{u_1, u_2\}$ span the -1 eigenspace of T.
- (e) Find the characteristic polynomial of T. Justify your answer!
- 4. (25 points) Let V be a vector space and $T: V \to V$ an invertible linear transformation.
 - (a) Show that if α is an eigenvalue of T, then $\alpha \neq 0$ and α^{-1} is an eigenvalue of T^{-1} .
 - (b) Show that if T is diagonalizable, then so is T^{-1} .

- 5. (25 points) Let $\mathcal{F}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} with derivatives of all orders and V the subspace spanned by $\{\cos(x), \sin(x), \cos(2x), \sin(2x)\}$. Let $T: V \to V$ be the differentiation operator, T(f) = f'.
 - (a) Show that the matrix $[T]_{\beta}$ of T in the basis $\beta := \{\cos(x), \sin(x), \cos(2x), \sin(2x)\}$

of
$$V$$
 is
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}.$$

- (b) Find the characteristic polynomial h(x) of T. Show your work!
- (c) Find the minimal polynomial m(x) of T. Justify your answer!
- (d) Show that the matrix $[T]_{\beta}$ is diagonalizable in $M_4(\mathbb{C})$, but not in $M_4(\mathbb{R})$.
- (e) Show that the primary decomposition of V is a direct sum $V = V_1 \oplus V_2$ of two subspaces and find a basis for each of V_1 and V_2 (consisting of functions in V). Note that V is a vector space over \mathbb{R} .