Solve 4 out of the following 5 problems. Show all your work and justify all your answers!!!

1. (25 points) Set $A:=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
(a) Find the characteristic polynomial $h(x)$ of A. Show your work!
(b) Find the minimal polynomial $m(x)$ of A in the polynomial ring $\mathbb{C}[x]$. Do not forget to carefully justify your answer!
(c) Show that A is not similar to a diagonal matrix in $M_{3}(\mathbb{R})$.
(d) Find a basis of \mathbb{C}^{3} consisting of eigenvectors of A. Hint: Use the notation η for the third root of unity $\cos (2 \pi / 3)+i \sin (2 \pi / 3)$. Express your answer in terms of powers of η, in order to simplify the notation and the computations.
(e) Find an invertible matrix P and a diagonal matrix D, both in $M_{3}(\mathbb{C})$, such that $P^{-1} A P=D$.
2. (25 points) Let V be a finite dimensional vector space over \mathbb{R} with an inner product and $T: V \rightarrow V$ an orthogonal transformation. Prove that $\operatorname{det}(T)$ is equal to 1 or -1 .
3. (25 points) Let V be an n dimensional vector space over \mathbb{R} with an inner product, where $n \geq 3$. Let u_{1} and u_{2} be two unit vectors in V satisfying $\left(u_{1}, u_{2}\right)=0$. Let $T: V \rightarrow V$ be the composition $T=R_{u_{1}} R_{u_{2}}$, where $R_{u_{i}}$ is the reflection of V with respect to the subspace u_{i}^{\perp} orthogonal to u_{i}. Recall that $R_{u_{i}}$ is given by

$$
R_{u_{i}}(v)=v-2\left(u_{i}, v\right) u_{i}
$$

(a) Show that $R_{u_{1}}$ and $R_{u_{2}}$ commute. In other words, use the assumption $\left(u_{1}, u_{2}\right)=0$ to prove the equality $R_{u_{1}} R_{u_{2}}(v)=R_{u_{2}} R_{u_{1}}(v)$, for all v in V.
(b) Show that $T^{2}=1$. Hint: Show first that $R_{u_{i}}^{2}=1$.
(c) Show that T is diagonalizable.
(d) Show that $\left\{u_{1}, u_{2}\right\}$ span the -1 eigenspace of T.
(e) Find the characteristic polynomial of T. Justify your answer!
4. (25 points) Let V be a vector space and $T: V \rightarrow V$ an invertible linear transformation.
(a) Show that if α is an eigenvalue of T, then $\alpha \neq 0$ and α^{-1} is an eigenvalue of T^{-1}.
(b) Show that if T is diagonalizable, then so is T^{-1}.
5. (25 points) Let $\mathcal{F}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} with derivatives of all orders and V the subspace spanned by $\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\}$. Let $T: V \rightarrow V$ be the differentiation operator, $T(f)=f^{\prime}$.
(a) Show that the matrix $[T]_{\beta}$ of T in the basis $\beta:=\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\}$ of V is $\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0\end{array}\right)$.
(b) Find the characteristic polynomial $h(x)$ of T. Show your work!
(c) Find the minimal polynomial $m(x)$ of T. Justify your answer!
(d) Show that the matrix $[T]_{\beta}$ is diagonalizable in $M_{4}(\mathbb{C})$, but not in $M_{4}(\mathbb{R})$.
(e) Show that the primary decomposition of V is a direct sum $V=V_{1} \oplus V_{2}$ of two subspaces and find a basis for each of V_{1} and V_{2} (consisting of functions in $V)$. Note that V is a vector space over \mathbb{R}.

