Solve five of the following six problems. Show all your work and justify all your answers.

1. (22 points) Set $A:=\left(\begin{array}{ccc}1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1\end{array}\right)$.
(a) Show that the characteristic polynomial of A is equal to $(x-3)\left(x^{2}+3\right)$. Show your work!
(b) Find a basis of \mathbb{C}^{3} consisting of eigenvectors of A. Hint: Use the notation $\eta=\frac{-1+\sqrt{3} i}{2}$, $\bar{\eta}=\frac{-1-\sqrt{3} i}{2}$ and note that $\eta \bar{\eta}=1$ and $\eta^{3}=1$ (so $\bar{\eta}=\eta^{2}$).
(c) Find an invertible matrix P and a diagonal matrix D, both in $M_{3}(\mathbb{C})$, such that $P^{-1} A P=$ D.
2. (22 points) Let $A=\left(\begin{array}{ccc}2 & 3 & 1 \\ 0 & -1 & 0 \\ -1 & -1 & 0\end{array}\right)$ and work over the field \mathbb{R} of real numbers.
(a) Show that the characteristic polynomial of A is $(x+1)(x-1)^{2}$.
(b) Find a basis for each eigenspace of A.
(c) Check that each vector you found in part 2 b is indeed an eigenvector!
(d) Find the minimal polynomial of A. Justify your answer!
(e) Find a basis for each V_{i} in the Primary Decomposition $\mathbb{R}^{3}=V_{1} \oplus V_{2}$ with respect to A.
(f) Find the elementary divisors of A. Carefully justify your answer!
(g) Find the Jordan canonical form of A. Justify your answer!
(h) Find an invertible matrix P, such that $P^{-1} A P$ is in the Jordan canonical form you provided in part 2 g . Describe your method in complete sentences! Credit will not be given to a solution found by trial and error.
3. (22 points)
(a) The matrix $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 1\end{array}\right)$ satisfies $P^{-1} A P=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, where $P=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$. Use this information to obtain formulas for the entries of the matrix $e^{t A}$ as functions of t. State (in words) each algebraic property, of the exponential of a matrix, you use.
(b) Use your work in part 3a to show that the solution $\left(y_{1}(t), y_{2}(t)\right)$ of the system

$$
\begin{aligned}
& \frac{\partial y_{1}}{\partial t}=3 y_{1}+y_{2} \\
& \frac{\partial y_{2}}{\partial t}=-y_{1}+y_{2}
\end{aligned}
$$

satisfying $y_{1}(0)=a$ and $y_{2}(0)=b$ is

$$
\begin{aligned}
y_{1}(t) & =a e^{2 t}+(a+b) t e^{2 t} \\
y_{2}(t) & =b e^{2 t}-(a+b) t e^{2 t} .
\end{aligned}
$$

4. (22 points) Let $A=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$ and $B=\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$.
(a) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by $T(v)=A v$. How many direct summands appear in the Primary Decomposition of \mathbb{R}^{4} with respect to T ? Justify your answer!
(b) Show that for every vector v in \mathbb{R}^{4}, the order $m_{v}(x)$ of v with respect to T is a power of $(x-2)$.
(c) Find the orders $m_{e_{1}}(x), m_{e_{2}}(x), m_{e_{3}}(x), m_{e_{4}}(x)$ with respect to T, for the elements of the standard basis of \mathbb{R}^{4}. Hint: You may want to use the following equality (you do not need to prove it) $\operatorname{span}\left\{v, A v, A^{2} v, \ldots\right\}=\operatorname{span}\left\{v,(A-2 I) v,(A-2 I)^{2} v, \ldots\right\}$.
(d) Use your work in part 4 c in order to find a decomposition of \mathbb{R}^{4} as a direct $\operatorname{sum}\left\langle v_{1}\right\rangle \oplus$ $\left\langle v_{2}\right\rangle \oplus \cdots \oplus\left\langle v_{k}\right\rangle$ of cyclic subspaces with respect to T, such that $m_{v_{i}}(x)$ is a power of a prime polynomial in $\mathbb{R}[x]$. Justify your answer!
(e) Are the matrices A and B similar? Use your work above to justify your answer. B is given at the beginning of Question 4.
5. (22 points)
(a) Let A be an $n \times n$ matrix with real entries and $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ the linear transformation given by multiplication by A. Assume that $\lambda=a+b i$ is an eigenvalue of T. Show that the complex conjugate $\bar{\lambda}=a-b i$ is an eigenvalue of T as well.
(b) Let V be an inner product space (over \mathbb{R}) and $T: V \rightarrow V$ an orthogonal transformation. Show that if λ is an eigenvalue of T, then $\lambda=1$ or $\lambda=-1$.
(c) Assume that in part 5 b the dimension of V is odd. Show that T has an eigenvector with eigenvalue 1 or -1 . Hint: Use part 5 a.
(d) Consider \mathbb{R}^{3} as an inner product space with respect to the dot product and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be an orthogonal transformation. Assume that u is an eigenvector of T and let W be the plane orthogonal to u. Show that W is T-invariant (i.e., that $T(w)$ belongs W, for all w in $W)$.
(e) Keep the notation of part 5d. Show that the restriction $T_{W}: W \rightarrow W$ of T to W is an orthogonal transformation.
(f) Keep the notation of part 5d. Assume, in addition, that the eigenvalue of u is 1 and that $\operatorname{det}(T)=1$. Show that there exists a basis $\beta_{2}:=\{v, w\}$ of W, such that the matrix of T with respect to the basis $\beta:=\{u, v, w\}$ is of the form $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right)$, for some angle θ. Hint: You may use the fact that a 2×2 orthogonal matrix with determinant 1 is the matrix of a rotation of \mathbb{R}^{2}.
6. (22 points)
(a) Recall that a linear transformation $E: V \rightarrow V$ is eidempotent, if E is non-zero, and $E^{2}=E$. Show that every eidempotent linear transformation is diagonalizable.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation with standard matrix A and minimal polynomial $m(x)=(x-2)^{2}(x-3)$. Set $q_{1}(x)=(x-3)$ and $q_{2}(x)=(x-2)^{2}$. Find a polynomial $a_{1}(x)=$ $a x+b$ of degree 1 and a constant polynomial $a_{2}(x)=c$, such that $a_{1}(x) q_{1}(x)+a_{2}(x) q_{2}(x)=1$ (the constant polynomial 1).
(c) Set $E_{1}:=a_{1}(A) q_{1}(A)$ and $E_{2}:=a_{2}(A) q_{2}(A)$. Show that $E_{1} E_{2}=E_{2} E_{1}, E_{1}+E_{2}=I$, where I is the identity matrix.
(d) Keep the notation of part 6c. Show that $E_{1} E_{2}=0$.
(e) Keep the notation of part 6c. Show that E_{1} and E_{2} are idempotent matrices.
(f) Let $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 3 & -1 \\ -1 & 0 & 3\end{array}\right)$. The minimal polynomial of A is $m(x)=(x-2)^{2}(x-3)$. You are not asked to prove it. Calculate the matrices E_{1} and E_{2} for this matrix A. Hint: Start with E_{2} to save calculations.
