Name: \qquad
Solve 4 out of the following 5 problems. Indicate below which problem you wish not be graded. If you fail to do so, problem 5 will not be graded.
Please do not grade problem \qquad .

Show all your work and justify all your answers!!!

1. (25 points) Set $A:=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$.
(a) Find the characteristic polynomial $h(x)$ of A.
(b) Find the minimal polynomial $m(x)$ of A in the polynomial ring $\mathbb{C}[x]$. Do not forget to carefully justify your answer!
(c) Show that A is not similar to a diagonal matrix in $M_{2}(\mathbb{R})$.
(d) Find a basis of \mathbb{C}^{2} consisting of eigenvectors of A.
(e) Find an invertible matrix P and a diagonal matrix D, both in $M_{2}(\mathbb{C})$, such that $P^{-1} A P=D$.
2. (25 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by multiplication by $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$.
(a) Find the characteristic polynomial of T.
(b) Find the minimal polynomial of T. Justify your answer!
(c) Determine if T is diagonalizable. Justify your answer!
(d) Find the eigenvalues of T.
(e) Find a basis for each eigenspace of T.
(f) Find an upper triangular matrix B and an invertible matrix P, such that $B=P^{-1} A P$. Carefully explain, in complete sentences, your method for finding P. Credit will not be given for an answer obtained by trial and error.
3. (25 points) Let V be a finite dimensional vector space over \mathbb{R} and $T: V \rightarrow V$ a linear transformation satisfying $T^{3}=T$. Show that T is diagonalizable.
4. (25 points) Let V be a finite dimensional vector space and $T: V \rightarrow V$ a linear transformation.
(a) Show that if T is invertible, then x does not divide the minimal polynomial $m(x)$ of T.
(b) Prove that T is invertible, if and only if the constant term a_{0} of the minimal polynomial $m(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}$ of T is different from zero. Show, furthermore, that when T is invertible, then T^{-1} can be expressed as a polynomial in T.
5. (25 points) Let $\mathcal{F}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} with derivatives of all orders and V the subspace spanned by $\left\{e^{x}, e^{2 x}, x e^{x}, x e^{2 x}\right\}$. Let $T: V \rightarrow V$ be the differentiation operator, $T(f)=f^{\prime}$.
(a) Show that the matrix $[T]_{\beta}$ of T in the basis $\beta:=\left\{e^{x}, e^{2 x}, x e^{x}, x e^{2 x}\right\}$ of V is $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$
(b) Find the characteristic polynomial $h(x)$ of T.
(c) Find the minimal polynomial $m(x)$ of T. Justify your answer!
(d) Show that the primary decomposition of V is a direct sum $V=V_{1} \oplus V_{2}$ of two subspaces and find a basis for each of V_{1} and V_{2} (consisting of functions in V).
