1. (20 points) Let U, V, and W be vector spaces of dimensions m, n, and p, respectively. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations satisfying $T S=0$ (the zero linear transformation from U to W). Prove that $\operatorname{rank}(S)+\operatorname{rank}(T) \leq n$. Hint: Recall that $\operatorname{rank}(S)=\operatorname{dim}(i m(S))$ and relate the image $i m(S)$ to the kernel (i.e., null space) of T.

Answer: We are given that $T(S(u))=0$, for every $u \in U$. Hence, $S(u)$ belongs to $\operatorname{ker}(T)$, for all $u \in U$. We conclude that $\operatorname{im}(S)$ is a subspace of $\operatorname{ker}(T)$, and so $\operatorname{dim}(\operatorname{im}(S)) \leq \operatorname{dim}(\operatorname{ker}(T))$. The rank nullity theorem yields the left equality below

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(i m(T)) \geq \operatorname{dim}(i m(S))+\operatorname{dim}(i m(T))
$$

while the right inequality was proven above. Now $n=\operatorname{dim}(V)$ and the right hand side is $\operatorname{rank}(S)+\operatorname{rank}(T)$, by definition of the rank of a linear transformation.
2. (20 points) Let M_{3} be the vector space of 3×3 matrices with real coefficients, A the 3×3 matrix with all entries equal 1 , and I the 3×3 identity matrix. Determine whether there exists a linear transformation $T: \mathbb{R}^{3} \rightarrow M_{3}$, satisfying $T(1,1,1)=I+2 A, T(1,2,1)=I+A$, and $T(3,2,1)=2 I+A$.
Hint: Use a theorem to justify your answer with as few computations as possible!
Answer: There exists a unique such linear transformation for the following reason. The three vectors $\{(1,1,1),(1,2,1),(3,2,1)\}$ form a basis β of \mathbb{R}^{3}, since they are linearly independent, as is easily seen by row reduction of the 3×3 matrix with these vectors as columns. Theorem (13.1) page 99 states that for every vector space W and every choice of three vectors w_{1}, w_{2}, and w_{3} in W, there exists a unique linear transformation $T: \mathbb{R}^{3} \rightarrow W$, which maps v_{i} to w_{i}, for $1 \leq i \leq 3$. More explicitly, a vector v in \mathbb{R}^{3} with β-coordinate vector $[v]_{\beta}=\left(c_{1}, c_{2}, c_{3}\right)$ is sent by T to $\sum_{i=1}^{3} c_{i} w_{i}$. Apply this theorem with $W=M_{3}$.
3. (20 points) Let V be the vector space of all polynomial functions

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

of degree ≤ 3 with real coefficients c_{i}. Let $T: V \rightarrow V$ the linear transformation

$$
T(f)=(x+1) \frac{\partial f}{\partial x}-f
$$

sending a polynomial f to $(x+1)$ times its derivative minus f itself, and $S: V \rightarrow V$ the linear transformation $S(f)=x \frac{\partial f}{\partial x}-2 f$.
(a) Compute the composite linear transformation $T S: V \rightarrow V$, i.e., find polynomials $a(x), b(x), c(x)$, such that $T(S(f))=a(x) \frac{\partial^{2} f}{\partial x^{2}}+b(x) \frac{\partial f}{\partial x}+c(x) f$.
Answer: $T(S(f))=T\left(x \frac{\partial f}{\partial x}-2 f\right)=(x+1) \frac{\partial}{\partial x}\left(x \frac{\partial f}{\partial x}-2 f\right)-\left[x \frac{\partial f}{\partial x}-2 f\right]=$ $\left(x^{2}+x\right) \frac{\partial^{2} f}{\partial x^{2}}+(-2 x-1) \frac{\partial f}{\partial x}+2 f$. The last equality uses the product rule for differentiation.
(b) Find the matrix $[S]_{\beta}$ of S (not of $T S$) in the basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ of V. Answer: $[S]_{\beta}=\left([S(1)]_{\beta}[S(x)]_{\beta}\left[S\left(x^{2}\right)\right]_{\beta}\left[S\left(x^{3}\right)\right]_{\beta}\right)=\left(\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
(c) You are given that the matrix of T in the basis β is $[T]_{\beta}=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2\end{array}\right)$.

Use this information to find the matrix of $T S$ in the basis β. (Credit will not be given for a solution using another method).
Answer: $[T S]_{\beta}=[T]_{\beta}[S]_{\beta}=$
$\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2\end{array}\right)\left(\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 2\end{array}\right)$
(d) Find a basis for the kernel $\operatorname{ker}(T S):=\{f: T S(f)=0\}$. Justify your answer!

Answer: The kernel of the matrix $[T S]_{\beta}$ has basis $\left\{\left(\begin{array}{c}1 / 2 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$.
These are the β-coordinate vectors of the basis $\left\{\frac{1}{2}+x, x^{2}\right\}$ of $T S$.
(e) Find a basis for the image $T S(V)$ of $T S$ (consisting of polynomials!!!).

Answer: The pivot columns of $[T S]_{\beta}$ are the coordinate vectors of the basis $\left\{2,3 x^{2}+2 x^{3}\right\}$ of $i m(T S)$.
4. (20 points) Let $C([-\pi, \pi])$ be the vector space of continuous real valued functions on the interval $[-\pi, \pi]$. Recall that the pairing $(f, g):=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$ defines an inner product on $C([-\pi, \pi])$. Recall also that the set

$$
\Sigma:=\{\sin (n x): n \text { is a positive integer }\}
$$

is an orthonormal subset. You do not need to verify this fact.
(a) Let f and g be two functions given by

$$
\begin{aligned}
f(x) & :=f_{1} \sin (x)+f_{2} \sin (2 x)+f_{3} \sin (3 x), \\
g(x) & :=g_{1} \sin (x)+g_{2} \sin (2 x)+g_{3} \sin (3 x),
\end{aligned}
$$

where the coefficients f_{i} and $g_{i}, 1 \leq i \leq 3$, are real numbers. Express the inner product (f, g) in terms of the coefficients f_{i} and g_{i}.
Answer: We know that the set $\{\sin (x), \sin (2 x), \sin (3 x)\}$ is orthonormal, i.e., $(\sin (n x), \sin (m x))=0$, if $n \neq m$, and $(\sin (n x), \sin (n x))=1$. Hence, $(f, g)=f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}$.
(b) Set $f(x)=\sin (x)+\sin (3 x)$, and $g(x)=\sin (x)+\sin (2 x)+\sin (3 x)$. Use the Gram-Schmidt process to find an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ for the subspace W of $C([-\pi, \pi])$ spanned by the set $\{f, g\}$.

Answer: $(f, f)=2$, so $u_{1}:=\frac{1}{\sqrt{2}} f=\frac{1}{\sqrt{2}}(\sin (x)+\sin (3 x))$. Let \hat{g} be the projection of g to $\operatorname{span}\left\{u_{1}\right\}$. Then $\hat{g}=\left(g, u_{1}\right) u_{1}=\sin (x)+\sin (3 x)$. Set $\tilde{u}_{2}:=g-\hat{g}=\sin (2 x)$. Then $u_{2}:=\frac{1}{\left\|\tilde{u}_{2}\right\|} \tilde{u}_{2}=\tilde{u}_{2}=\sin (2 x)$.
(c) Let h be the function $h(x)=x$. Find the projection \hat{h} of h to W. Hint: Integration by parts yields $\int x \sin (n x) d x=-\frac{x}{n} \cos (n x)+\frac{1}{n^{2}} \sin (n x)+C$. Use it to show that $(x, \sin (n x))=(-1)^{n+1} \frac{2}{n}$.
Answer: $(x, \sin (n x))=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x=\left[-\frac{x}{n} \cos (n x)+\frac{1}{n^{2}} \sin (n x)\right]_{-\pi}^{\pi}=$ $\frac{-2}{n} \cos (n \pi)=(-1)^{n+1} \frac{2}{n}$.
We have $\hat{h}=\left(h, u_{1}\right) u_{1}+\left(h, u_{2}\right) u_{2}=\frac{4}{3} \sin (x)-\sin (2 x)+\frac{4}{3} \sin (3 x)$.
(d) Find an orthogonal (not necessarily orthonormal) basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of the subspace V of $C([-\pi, \pi])$ spanned by the functions $\{f, g, h\}$ in parts 4 b and 4 c .

Answer: Take the basis $\left\{u_{1}, u_{2}, h-\hat{h}\right\}=$ $\left\{\frac{1}{\sqrt{2}}[\sin (x)+\sin (3 x)], \sin (2 x), x-\frac{4}{3} \sin (x)+\sin (2 x)-\frac{4}{3} \sin (3 x)\right\}$.
5. (20 points) Let V be an n-dimensional vector space with an inner product, and $W \subset V$ an r-dimensional subspace of V, with $0<r<n$.
(a) Show that every orthonormal basis $\beta_{1}:=\left\{u_{1}, \ldots, u_{r}\right\}$ of W can be completed to an orthonormal basis $\beta:=\left\{u_{1}, \ldots, u_{r}, u_{r+1}, \ldots, u_{n}\right\}$ of V.
Answer: Any basis of W can be completed to a basis of V. Let
$\left\{u_{1}, \ldots, u_{r}, v_{r+1}, \ldots, v_{n}\right\}$ be a basis of V. Performing the Gram-Schmidt process on this basis does not change the first r vectors, and thus produces an orthonormal basis of V, whose first r elements are $\left\{u_{1}, \ldots, u_{r}\right\}$.
(b) Let $P: V \rightarrow V$ be the orthogonal projection onto W. Find the matrix of P in a basis β of the type described in part 5 a.
Answer: The projection is given by the formula

$$
P(v)=\sum_{i=1}^{r}\left(v, u_{i}\right) u_{i} .
$$

As the basis β is orthonormal, $P\left(u_{i}\right)=u_{i}$, for $1 \leq i \leq r$, and $P\left(u_{i}\right)=0$, for $r+1 \leq i \leq n$. Hence, the matrix $[P]_{\beta}$ is diagonal, with the first r diagonal entries all equal 1 , and the rest are 0 .
(c) Let $I: V \rightarrow V$ be the identity linear transformation and P the projection in part 5b. Prove that $I-2 P$ is an orthogonal transformation from V to V.
Answer:
Method I: We have $(I-2 P)\left(u_{i}\right)=\left\{\begin{array}{cll}-u_{i} & \text { if } & i \leq r, \\ u_{i} & \text { if } & i \geq r .\end{array}\right.$
We see that $(I-2 P)$ takes the orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ to the orthonormal basis $\left\{-u_{1}, \ldots,-u_{r}, u_{r+1}, \ldots, u_{n}\right\}$. Thus $I-2 P$ is orthogonal, by Theorem . 15.11 page 127 (characterization 3).
Method II: Set $A:=[I-2 P]_{\beta}=I_{n}-2[P]_{\beta}$. Then A is a diagonal matrix with ± 1 on the diagonal. Hence $A^{t}=A^{-1}$, and thus $I-2 P$ is orthogonal, by Theorem . 15.11 page 127 (characterization 4).

