Name:

- 1. (20 points) Let U, V, and W be vector spaces of dimensions m, n, and p, respectively. Let $S: U \to V$ and $T: V \to W$ be linear transformations satisfying TS = 0 (the zero linear transformation from U to W). Prove that $\operatorname{rank}(S) + \operatorname{rank}(T) \leq n$. Hint: Recall that $\operatorname{rank}(S) = \dim(\operatorname{im}(S))$ and relate the image $\operatorname{im}(S)$ to the kernel (i.e., null space) of T.
- 2. (20 points) Let M_3 be the vector space of 3×3 matrices with real coefficients, A the 3×3 matrix with all entries equal 1, and I the 3×3 identity matrix. Determine whether there exists a linear transformation $T: \mathbb{R}^3 \to M_3$, satisfying T(1,1,1) = I + 2A, T(1,2,1) = I + A, and T(3,2,1) = 2I + A. Hint: Use a theorem to justify your answer with as few computations as possible!
- 3. (20 points) Let V be the vector space of all polynomial functions

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

of degree ≤ 3 with real coefficients c_i . Let $T: V \to V$ the linear transformation

$$T(f) = (x+1)\frac{\partial f}{\partial x} - f,$$

sending a polynomial f to (x+1) times its derivative minus f itself, and $S:V\to V$ the linear transformation $S(f)=x\frac{\partial f}{\partial x}-2f$.

- (a) Compute the composite linear transformation $TS: V \to V$, i.e., find polynomials a(x), b(x), c(x), such that $T(S(f)) = a(x) \frac{\partial^2 f}{\partial x^2} + b(x) \frac{\partial f}{\partial x} + c(x) f$.
- (b) Find the matrix $[S]_{\beta}$ of S (**not** of TS) in the basis $\beta = \{1, x, x^2, x^3\}$ of V.
- (c) You are given that the matrix of T in the basis β is $[T]_{\beta} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

Use this information to find the matrix of TS in the basis β . (Credit will not be given for a solution using another method).

- (d) Find a basis for the kernel $\ker(TS) := \{f : TS(f) = 0\}$. Justify your answer!
- (e) Find a basis for the image TS(V) of TS (consisting of polynomials!!!).
- 4. (20 points) Let $C([-\pi, \pi])$ be the vector space of continuous real valued functions on the interval $[-\pi, \pi]$. Recall that the pairing $(f, g) := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx$ defines an inner product on $C([-\pi, \pi])$. Recall also that the set

$$\Sigma := \{ \sin(nx) : n \text{ is a positive integer} \}$$

is an orthonormal subset. You do **not** need to verify this fact.

(a) Let f and q be two functions given by

$$f(x) := f_1 \sin(x) + f_2 \sin(2x) + f_3 \sin(3x),$$

$$g(x) := g_1 \sin(x) + g_2 \sin(2x) + g_3 \sin(3x),$$

where the coefficients f_i and g_i , $1 \le i \le 3$, are real numbers. Express the inner product (f, g) in terms of the coefficients f_i and g_i .

- (b) Set $f(x) = \sin(x) + \sin(3x)$, and $g(x) = \sin(x) + \sin(2x) + \sin(3x)$. Use the Gram-Schmidt process to find an orthonormal basis $\{u_1, u_2\}$ for the subspace W of $C([-\pi, \pi])$ spanned by the set $\{f, g\}$.
- (c) Let h be the function h(x) = x. Find the projection of h to W. Hint: Integration by parts yields $\int x \sin(nx) dx = -\frac{x}{n} \cos(nx) + \frac{1}{n^2} \sin(nx) + C$. Use it to show that $(x, \sin(nx)) = (-1)^{n+1} \frac{2}{n}$.
- (d) Find an orthogonal (not necessarily orthonormal) basis $\{u_1, u_2, u_3\}$ of the subspace V of $C([-\pi, \pi])$ spanned by the functions $\{f, g, h\}$ in parts 4b and 4c
- 5. (20 points) Let V be an n-dimensional vector space with an inner product, and $W \subset V$ an r-dimensional subspace of V, with 0 < r < n.
 - (a) Show that *every* orthonormal basis $\beta_1 := \{u_1, \dots, u_r\}$ of W can be completed to an orthonormal basis $\beta := \{u_1, \dots, u_r, u_{r+1}, \dots, u_n\}$ of V.
 - (b) Let $P: V \to V$ be the orthogonal projection onto W. Find the matrix of P in a basis β of the type described in part 5a.
 - (c) Let $I: V \to V$ be the identity linear transformation and P the projection in part 5b. Prove that I-2P is an orthogonal transformation from V to V.