Name: \qquad

1. (20 points) Let U, V, and W be vector spaces of dimensions m, n, and p, respectively. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear transformations satisfying $T S=0$ (the zero linear transformation from U to W). Prove that $\operatorname{rank}(S)+\operatorname{rank}(T) \leq n$. Hint: Recall that $\operatorname{rank}(S)=\operatorname{dim}(i m(S))$ and relate the image $i m(S)$ to the kernel (i.e., null space) of T.
2. (20 points) Let M_{3} be the vector space of 3×3 matrices with real coefficients, A the 3×3 matrix with all entries equal 1 , and I the 3×3 identity matrix. Determine whether there exists a linear transformation $T: \mathbb{R}^{3} \rightarrow M_{3}$, satisfying $T(1,1,1)=I+2 A, T(1,2,1)=I+A$, and $T(3,2,1)=2 I+A$.
Hint: Use a theorem to justify your answer with as few computations as possible!
3. (20 points) Let V be the vector space of all polynomial functions

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

of degree ≤ 3 with real coefficients c_{i}. Let $T: V \rightarrow V$ the linear transformation

$$
T(f)=(x+1) \frac{\partial f}{\partial x}-f
$$

sending a polynomial f to $(x+1)$ times its derivative minus f itself, and $S: V \rightarrow V$ the linear transformation $S(f)=x \frac{\partial f}{\partial x}-2 f$.
(a) Compute the composite linear transformation $T S: V \rightarrow V$, i.e., find polynomials $a(x), b(x), c(x)$, such that $T(S(f))=a(x) \frac{\partial^{2} f}{\partial x^{2}}+b(x) \frac{\partial f}{\partial x}+c(x) f$.
(b) Find the matrix $[S]_{\beta}$ of $S($ not of $T S)$ in the basis $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ of V.
(c) You are given that the matrix of T in the basis β is $[T]_{\beta}=\left(\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2\end{array}\right)$. Use this information to find the matrix of $T S$ in the basis β. (Credit will not be given for a solution using another method).
(d) Find a basis for the kernel $\operatorname{ker}(T S):=\{f: T S(f)=0\}$. Justify your answer!
(e) Find a basis for the image $T S(V)$ of $T S$ (consisting of polynomials!!!).
4. (20 points) Let $C([-\pi, \pi])$ be the vector space of continuous real valued functions on the interval $[-\pi, \pi]$. Recall that the pairing $(f, g):=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$ defines an inner product on $C([-\pi, \pi])$. Recall also that the set

$$
\Sigma:=\{\sin (n x): n \text { is a positive integer }\}
$$

is an orthonormal subset. You do not need to verify this fact.
(a) Let f and g be two functions given by

$$
\begin{aligned}
f(x) & :=f_{1} \sin (x)+f_{2} \sin (2 x)+f_{3} \sin (3 x), \\
g(x) & :=g_{1} \sin (x)+g_{2} \sin (2 x)+g_{3} \sin (3 x)
\end{aligned}
$$

where the coefficients f_{i} and $g_{i}, 1 \leq i \leq 3$, are real numbers. Express the inner product (f, g) in terms of the coefficients f_{i} and g_{i}.
(b) Set $f(x)=\sin (x)+\sin (3 x)$, and $g(x)=\sin (x)+\sin (2 x)+\sin (3 x)$. Use the Gram-Schmidt process to find an orthonormal basis $\left\{u_{1}, u_{2}\right\}$ for the subspace W of $C([-\pi, \pi])$ spanned by the set $\{f, g\}$.
(c) Let h be the function $h(x)=x$. Find the projection of h to W. Hint: Integration by parts yields $\int x \sin (n x) d x=-\frac{x}{n} \cos (n x)+\frac{1}{n^{2}} \sin (n x)+C$. Use it to show that $(x, \sin (n x))=(-1)^{n+1} \frac{2}{n}$.
(d) Find an orthogonal (not necessarily orthonormal) basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of the subspace V of $C([-\pi, \pi])$ spanned by the functions $\{f, g, h\}$ in parts 4 b and 4c.
5. (20 points) Let V be an n-dimensional vector space with an inner product, and $W \subset V$ an r-dimensional subspace of V, with $0<r<n$.
(a) Show that every orthonormal basis $\beta_{1}:=\left\{u_{1}, \ldots, u_{r}\right\}$ of W can be completed to an orthonormal basis $\beta:=\left\{u_{1}, \ldots, u_{r}, u_{r+1}, \ldots, u_{n}\right\}$ of V.
(b) Let $P: V \rightarrow V$ be the orthogonal projection onto W. Find the matrix of P in a basis β of the type described in part 5 a.
(c) Let $I: V \rightarrow V$ be the identity linear transformation and P the projection in part 5b. Prove that $I-2 P$ is an orthogonal transformation from V to V.

