Solve the five problems 1, 2, 3, 4, 5, and **only one** out of the last two: 6 **or** 7. If you fail to do so, problem 7 will not be graded.

Please do not grade problem _____.

Show all your work and justify all your answers!!!

1. (20 points) Let V be a 4 dimensional vector space over \mathbb{R} with an inner product, u a unit vector in V, so that (u,u)=1, and let W be the subspace of V orthogonal to u. Recall that the reflection of V with respect to the subspace W is given by the formula

$$R(v) = v - 2(v, u)u.$$

- (a) Let $\{w_1, w_2, w_3\}$ be a basis of W and set $\beta := \{u, w_1, w_2, w_3\}$. Find the matrix of R with respect to the basis β .
- (b) Find the characteristic polynomial of R.
- (c) Find the minimal polynomial of R. Justify all your answers above!
- 2. (15 points) Let V be an n-dimensional vector space over \mathbb{C} and $T:V\to V$ a linear transformation. Recall that T is *nilpotent*, if $T^k=0$, for some positive integer k.
 - (a) Prove that T is nilpotent, if all its eigenvalues are zero.
 - (b) Conversly, prove that if T is nilpotent, then all the eigenvalues are zero.
- 3. (15 points) Determine the Jordan canonical form (over \mathbb{C}) of the three matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Justify your answer with as little computations as possible. For each of the three pairs of matrices, $\{A, B\}$, $\{B, C\}$, and $\{A, C\}$ determine if the two matrices are similar.
- 4. (20 points)
 - (a) The matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$ satisfies $P^{-1}AP = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, where $P = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$. Use this information to obtain formulas for the entries of the matrix e^{tA} as functions of t. State (in words) each algebraic property, of the exponential of a matrix, you use.
 - (b) Use your work in part 4a to find the solution $(y_1(t), y_2(t))$ of the system

$$\begin{array}{ccccc} \frac{\partial y_1}{\partial t} & = & -y_2 \\ \frac{\partial y_2}{\partial t} & = & y_1 & + & 2y_2 \end{array}$$

satisfying $y_1(0) = 0$ and $y_2(0) = 1$.

- 5. (20 points) Let $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 3 & 0 \\ -1 & -4 & -1 \end{pmatrix}$ and work over the field \mathbb{R} of real numbers.
 - (a) Show that the characteristic polynomial of A is $(x+1)(x-2)^2$.

- (b) Find a basis for each eigenspace of A.
- (c) Check that each vector you found in part 5b is indeed an eigenvector!
- (d) Find the minimal polynomial of A. Justify your answer!
- (e) Find a basis for each V_i in the Primary Decomposition $\mathbb{R}^3 = V_1 \oplus V_2$ with respect to A.
- (f) Find the elementary divisors of A. Carefully justify your answer!
- (g) Find the Jordan canonical form of A.
- (h) Find an invertible matrix P, such that $P^{-1}AP$ is in Jordan canonical form. Describe your method in complete sentences! Credit will not be given to a solution found by trial and error.
- 6. (10 points) Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be multiplication by $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, and set $e_3 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Calculate the order $m_{e_3}(x)$ with respect to T. Justify your answer!
- 7. (10 points)
 - (a) Find the rational canonical form of a linear transformation over \mathbb{R} , whose two elementary divisors are as follows. $\{(x-2)^2, x^2+x+1\}$.
 - (b) Now work over \mathbb{C} and find the elementary divisors and the Jordan canonical form of the linear transformation given in part 7a. Justify your answer!