
Math 545 Linear transformations and the geometry of surfaces
A homework assignment

Let S be a smooth surface in R
3 given by the equation f(x, y, z) = 0, where smooth-

ness means that the gradient vector

∇f :=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

does not vanish at any point of S. Note that ∇f is a (non-linear in general) function
from R

3 to R
3. The tangent plane TP S to S at a point P ∈ S is the two dimensional

subspace of R
3 orthogonal to the gradient vector∇f(P ). Note that we define the tangent

plane TP S as a plane through the origin, which need not pass through P .

1. Let S̃ be the unit sphere given by x2 + y2 + z2 − 1 = 0 and P̃ = (x0, y0, z0) a point

of S̃. Show that the tangent plane T eP S̃ is the plane in R
3 orthogonal to the vector

(x0, y0, z0).

2. Let S be the ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 3, where a, b, c are fixed positive
numbers. Show that the point P = (a, b, c) belongs to S and the tangent plane of
S at P is the plane cut out by the linear equation x/a + y/b + z/c = 0.

3. A parametrization of an open subset of S consists of an open subset U of R
2

together with a one-to-one map X : U → R
3, with the following properties.

(a) The equality f(X(u, v)) = 0 holds, for all (u, v) ∈ U . This means that X
maps U into S.

(b) Write X(u, v) = (x(u, v), y(u, v), z(u, v)), expressing the components of X as
functions of the coordinates u and v on U . Then the entries of the the 3× 2
matrix

dX(u, v) :=




∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v





are functions of u and v, and we require dX(u, v) to have rank 2, for every
point (u, v) in the open set U .

Let Xu be the first column of dX(u, v) and Xv the second column. Show that

β := {Xu(u0, v0), Xv(u0, v0)} (1)

is a basis of TP S at the point P := X(u0, v0), for every parametrization X : U → S
and for every point (u0, v0) of U .

4. Given two surfases S and S̃ and a “nice” map G : S → S̃, one can define a linear
transformation dGP : TPS → TG(P )S̃, called the differential of G at P . We will
not define it, but rather state how to compute dGP in terms of parametrizations
of S and S̃. Note that the definition of dGP does not depend on the choice of
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parametrizations (see, for example, section 2.4 of the book Differential Geometry

of Curves and Surfaces, by M. P. DoCarmo, Prentice Hall 1976.)

Assume given a pair of parametrizations X : U → S and X̃ : Ũ → S̃, such that the
image G(X(U)) is contained in the image X̃(Ũ). Then given a point (u0, v0) in U ,

there exists a unique point (ũ0, ṽ0) in Ũ , such that X̃(ũ0, ṽ0) = G(X(u, v)), since

X̃ is assumed to be one-to-one. Thus, there exists a unique function g : U → Ũ ,
such that X̃(g(u, v)) = G(X(u, v)), for all (u, v) ∈ U .

S
G−→ S̃

X ↑ ↑ X̃

U
g−→ Ũ .

Fix a point (u0, v0) in U and set (ũ0, ṽ0) := g(u0, v0). Set P := X(u0, v0) and

P̃ := X̃(ũ0, ṽ0). Then dGP is defined (i.e., G is “nice” at P ) if the partials of g
are all defined at (u0, v0). Express the components of g as functions of u and v via
the notation g(u, v) = (ũ(u, v), ṽ(u, v)) and form the 2× 2 matrix

dg :=




∂eu
∂u

∂eu
∂v

∂ev
∂u

∂ev
∂v


 .

Then β := {Xu, Xv}, evaluated at (u0, v0), is a basis of TP S, β̃ := {X̃ũ, X̃ṽ}, eval-

uated at (ũ0, ṽ0), is a basis of T eP S̃, and dg(u0, v0) is equal to the matrix [[dGP ]]β,β̃

of the linear transformation dGP : TP S → T eP S̃ with respect to these two bases.
More explicitly,

dGP (Xu) =
∂X̃

∂u
=

(
∂ũ

∂u

)
X̃ũ +

(
∂ṽ

∂u

)
X̃ṽ and

dGP (Xv) =
∂X̃

∂v
=

(
∂ũ

∂v

)
X̃ũ +

(
∂ṽ

∂v

)
X̃ṽ.

The differential dGP can be defined independently of the choice of parametriza-
tions, and the above equations say that once parametrizations are chosen, dGP is

compatible with the chain rule.

5. Let S̃ be the unit sphere in R
3, given by the equation x2 + y2 + z2 = 1. Let S be

a surface in R
3, given by the equation f(x, y, z) = 0. The Gauss map G : S → S̃

of S is given by

G(P ) =
1

|∇f(P )|∇f(P ).

G sends a point P of S to the point on the unit sphere corresponding to a unit
normal vector to S at P . Observe that the tangent plane TG(P )S̃ to the unit sphere
is equal to TP S, by part 1 above. Hence,

dGP : TP S −→ TP S
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is a linear transformation from TP S to itself! We can thus define the determinant
det(dGP ) (Definition (18.7) on page 149 in our text). The determinant det(dGP )
is called the Gaussian curvature of S at P .

Let S be the surface given by x2 + (y/2)2 + (z/3)2 − 3 = 0. Let U be the open
subset of R

2 given by x2 + (y/2)2 < 3. Let X : U → S be the parametrization of
the upper half of the ellipsoid S, given by

X(u, v) =
(
u, v, 3

√
3− u2 − (v/2)2

)
.

Prove the equalities

Xu(u, v) =




1
0

−9x/z


 and Xv(u, v) =




0
1

−9y/4z


 ,

in T(x,y,z)S, where (x, y, z) = X(u, v).

6. Keep the notation of part 5. Choose the parametrization X̃(ũ, ṽ) =
(
ũ, ṽ,

√
1− ũ2 − ṽ2

)

of S̃, defined on the open unit disk Ũ in R
2. Set P = (1, 2, 3). Then P̃ =

G(P ) = 1
7
(6, 3, 2). Show that the matrix [[dGP ]]β,β̃ of dGP , with respect to the

basis β := {Xu(1, 2), Xv(1, 2)} of TP S and β̃ := {X̃ũ(
6
7
, 3

7
), X̃ṽ(

6
7
, 3

7
)} of T eP S̃, is

equal to
3

73

(
34 −5
−32 22

)
. (2)

Hint: Let π̃ : S̃ → Ũ be the projection given by π(x, y, z) = (x, y). Show first that

the unique function g : U → Ũ , satisfying G(X(u, v)) = X̃(g(u, v)), is given in our
case by g(u, v) = π̃(G(X(u, v))) = 3√

3+8u2+(5/16)v2

(
u, v

4

)
.

7. Keep the notation of part 6. Show that the bases β and β̃ of TP S are the same
(this is a coincidence). Conclude that the matrix [[dGP ]]β of dGP with respect to
the basis β := {Xu(1, 2), Xv(1, 2)} of TP S is equal to the matrix in equation (2).
Conclude also that the Gaussian curvature of S at P is 108

74 .

8. Let W be the open subset u2 + (v/3)2 < 3 of R
2 and Y : W → R

3 the function

Y (u, v) = (u, 2
√

3− u2 − (v/3)2, v).

Then Y is another parametrization of an open subset of the ellipsoid S in part
5 and P = (1, 2, 3) = Y (1, 3) is in the image of Y . Define the basis β2 :=
{Yu(1, 3), Yv(1, 3)} of TP S as in equation (1).

Use your answer in part 7 and Theorem (13.6)’ page 104 in the text in order to
show that the matrix [[dGP ]]β2

of the differential dGP : TP S → TP S of the Gauss
map, with respect to the new basis β2 of TP S, is equal to

[[dGP ]]β2
=

3

73

(
44 10

3

−18 12

)
. (3)
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The moral of this story: The subspace TP S of R
3, the linear transformation

dGP : TP S → TP S, and the Gaussian curvature det(dGP ), do not depend on the
choice of parametrization of S. In contrast, different parametrizations give rize to
different 2×2 matrices of dGP , such as (2), (3), or yet a third 2×2 matrix that
would arise if we choose a parametrization of the ellipsoid S via polar coordinates.
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