Math 545 Linear transformations and the geometry of surfaces
 A homework assignment

Let S be a smooth surface in \mathbb{R}^{3} given by the equation $f(x, y, z)=0$, where smoothness means that the gradient vector

$$
\nabla f:=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

does not vanish at any point of S. Note that ∇f is a (non-linear in general) function from \mathbb{R}^{3} to \mathbb{R}^{3}. The tangent plane $T_{P} S$ to S at a point $P \in S$ is the two dimensional subspace of \mathbb{R}^{3} orthogonal to the gradient vector $\nabla f(P)$. Note that we define the tangent plane $T_{P} S$ as a plane through the origin, which need not pass through P.

1. Let \widetilde{S} be the unit sphere given by $x^{2}+y^{2}+z^{2}-1=0$ and $\widetilde{P}=\left(x_{0}, y_{0}, z_{0}\right)$ a point of \widetilde{S}. Show that the tangent plane $T_{\widetilde{P}} \widetilde{S}$ is the plane in \mathbb{R}^{3} orthogonal to the vector $\left(x_{0}, y_{0}, z_{0}\right)$.
2. Let S be the ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=3$, where a, b, c are fixed positive numbers. Show that the point $P=(a, b, c)$ belongs to S and the tangent plane of S at P is the plane cut out by the linear equation $x / a+y / b+z / c=0$.
3. A parametrization of an open subset of S consists of an open subset U of \mathbb{R}^{2} together with a one-to-one map $X: U \rightarrow \mathbb{R}^{3}$, with the following properties.
(a) The equality $f(X(u, v))=0$ holds, for all $(u, v) \in U$. This means that X maps U into S.
(b) Write $X(u, v)=(x(u, v), y(u, v), z(u, v))$, expressing the components of X as functions of the coordinates u and v on U. Then the entries of the the 3×2 matrix

$$
d X(u, v):=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right)
$$

are functions of u and v, and we require $d X(u, v)$ to have rank 2 , for every point (u, v) in the open set U.

Let X_{u} be the first column of $d X(u, v)$ and X_{v} the second column. Show that

$$
\begin{equation*}
\beta:=\left\{X_{u}\left(u_{0}, v_{0}\right), X_{v}\left(u_{0}, v_{0}\right)\right\} \tag{1}
\end{equation*}
$$

is a basis of $T_{P} S$ at the point $P:=X\left(u_{0}, v_{0}\right)$, for every parametrization $X: U \rightarrow S$ and for every point $\left(u_{0}, v_{0}\right)$ of U.
4. Given two surfases S and \widetilde{S} and a "nice" map $G: S \rightarrow \widetilde{S}$, one can define a linear transformation $d G_{P}: T_{P} S \rightarrow T_{G(P)} \widetilde{S}$, called the differential of G at P. We will not define it, but rather state how to compute $d G_{P}$ in terms of parametrizations of S and \widetilde{S}. Note that the definition of $d G_{P}$ does not depend on the choice of
parametrizations (see, for example, section 2.4 of the book Differential Geometry of Curves and Surfaces, by M. P. DoCarmo, Prentice Hall 1976.)

Assume given a pair of parametrizations $X: U \rightarrow S$ and $\widetilde{X}: \widetilde{U} \rightarrow \widetilde{S}$, such that the image $G(X(U))$ is contained in the image $\widetilde{X}(\widetilde{U})$. Then given a point $\left(u_{0}, v_{0}\right)$ in U, there exists a unique point $\left(\tilde{u}_{0}, \tilde{v}_{0}\right)$ in \widetilde{U}, such that $\widetilde{X}\left(\tilde{u}_{0}, \tilde{v}_{0}\right)=G(X(u, v))$, since \widetilde{X} is assumed to be one-to-one. Thus, there exists a unique function $g: U \rightarrow \widetilde{U}$, such that $\widetilde{X}(g(u, v))=G(X(u, v))$, for all $(u, v) \in U$.

Fix a point $\left(u_{0}, v_{0}\right)$ in U and set $\left(\tilde{u}_{0}, \tilde{v}_{0}\right):=g\left(u_{0}, v_{0}\right)$. Set $P:=X\left(u_{0}, v_{0}\right)$ and $\widetilde{P}:=\widetilde{X}\left(\tilde{u}_{0}, \tilde{v}_{0}\right)$. Then $d G_{P}$ is defined (i.e., G is "nice" at P) if the partials of g are all defined at $\left(u_{0}, v_{0}\right)$. Express the components of g as functions of u and v via the notation $g(u, v)=(\widetilde{u}(u, v), \widetilde{v}(u, v))$ and form the 2×2 matrix

$$
d g:=\left(\begin{array}{cc}
\frac{\partial \widetilde{u}}{\partial u} & \frac{\partial \widetilde{u}}{\partial v} \\
\frac{\partial \widetilde{v}}{\partial u} & \frac{\partial \widetilde{v}}{\partial v}
\end{array}\right) .
$$

Then $\beta:=\left\{X_{u}, X_{v}\right\}$, evaluated at $\left(u_{0}, v_{0}\right)$, is a basis of $T_{P} S, \tilde{\beta}:=\left\{\tilde{X}_{\tilde{u}}, \widetilde{X}_{\tilde{v}}\right\}$, evaluated at $\left(\tilde{u}_{0}, \tilde{v}_{0}\right)$, is a basis of $T_{\widetilde{P}} \widetilde{S}$, and $d g\left(u_{0}, v_{0}\right)$ is equal to the matrix $\left[\left[d G_{P}\right]\right]_{\beta, \tilde{\beta}}$ of the linear transformation $d G_{P}: T_{P} S \rightarrow T_{\widetilde{P}} \widetilde{S}$ with respect to these two bases. More explicitly,

$$
\begin{aligned}
d G_{P}\left(X_{u}\right) & =\frac{\partial \tilde{X}}{\partial u}=\left(\frac{\partial \tilde{u}}{\partial u}\right) \widetilde{X}_{\tilde{u}}+\left(\frac{\partial \tilde{v}}{\partial u}\right) \widetilde{X}_{\tilde{v}} \text { and } \\
d G_{P}\left(X_{v}\right) & =\frac{\partial \widetilde{X}}{\partial v}=\left(\frac{\partial \tilde{u}}{\partial v}\right) \widetilde{X}_{\tilde{u}}+\left(\frac{\partial \tilde{v}}{\partial v}\right) \widetilde{X}_{\tilde{v}}
\end{aligned}
$$

The differential $d G_{P}$ can be defined independently of the choice of parametrizations, and the above equations say that once parametrizations are chosen, $d G_{P}$ is compatible with the chain rule.
5. Let \widetilde{S} be the unit sphere in \mathbb{R}^{3}, given by the equation $x^{2}+y^{2}+z^{2}=1$. Let S be a surface in \mathbb{R}^{3}, given by the equation $f(x, y, z)=0$. The Gauss map $G: S \rightarrow \widetilde{S}$ of S is given by

$$
G(P)=\frac{1}{|\nabla f(P)|} \nabla f(P)
$$

G sends a point P of S to the point on the unit sphere corresponding to a unit normal vector to S at P. Observe that the tangent plane $T_{G(P)} \widetilde{S}$ to the unit sphere is equal to $T_{P} S$, by part 1 above. Hence,

$$
d G_{P}: T_{P} S \quad \longrightarrow T_{P} S
$$

is a linear transformation from $T_{P} S$ to itself! We can thus define the determinant $\operatorname{det}\left(d G_{P}\right)$ (Definition (18.7) on page 149 in our text). The determinant $\operatorname{det}\left(d G_{P}\right)$ is called the Gaussian curvature of S at P.
Let S be the surface given by $x^{2}+(y / 2)^{2}+(z / 3)^{2}-3=0$. Let U be the open subset of \mathbb{R}^{2} given by $x^{2}+(y / 2)^{2}<3$. Let $X: U \rightarrow S$ be the parametrization of the upper half of the ellipsoid S, given by

$$
X(u, v)=\left(u, v, 3 \sqrt{3-u^{2}-(v / 2)^{2}}\right)
$$

Prove the equalities

$$
X_{u}(u, v)=\left(\begin{array}{c}
1 \\
0 \\
-9 x / z
\end{array}\right) \quad \text { and } \quad X_{v}(u, v)=\left(\begin{array}{c}
0 \\
1 \\
-9 y / 4 z
\end{array}\right)
$$

in $T_{(x, y, z)} S$, where $(x, y, z)=X(u, v)$.
6. Keep the notation of part 5 . Choose the parametrization $\tilde{X}(\tilde{u}, \tilde{v})=\left(\tilde{u}, \tilde{v}, \sqrt{1-\tilde{u}^{2}-\tilde{v}^{2}}\right)$ of \widetilde{S}, defined on the open unit disk \widetilde{U} in \mathbb{R}^{2}. Set $P=(1,2,3)$. Then $\widetilde{P}=$ $G(P)=\frac{1}{7}(6,3,2)$. Show that the matrix $\left[\left[d G_{P}\right]\right]_{\beta, \tilde{\beta}}$ of $d G_{P}$, with respect to the basis $\beta:=\left\{X_{u}(1,2), X_{v}(1,2)\right\}$ of $T_{P} S$ and $\tilde{\beta}:=\left\{\widetilde{X}_{\tilde{u}}\left(\frac{6}{7}, \frac{3}{7}\right), \widetilde{X}_{\tilde{v}}\left(\frac{6}{7}, \frac{3}{7}\right)\right\}$ of $T_{\tilde{P}} \widetilde{S}$, is equal to

$$
\frac{3}{7^{3}}\left(\begin{array}{cc}
34 & -5 \tag{2}\\
-32 & 22
\end{array}\right)
$$

Hint: Let $\tilde{\pi}: \widetilde{S} \rightarrow \widetilde{U}$ be the projection given by $\pi(x, y, z)=(x, y)$. Show first that the unique function $g: U \rightarrow \widetilde{U}$, satisfying $G(X(u, v))=\widetilde{X}(g(u, v))$, is given in our case by $g(u, v)=\tilde{\pi}(G(X(u, v)))=\frac{3}{\sqrt{3+8 u^{2}+(5 / 16) v^{2}}}\left(u, \frac{v}{4}\right)$.
7. Keep the notation of part 6. Show that the bases β and $\tilde{\beta}$ of $T_{P} S$ are the same (this is a coincidence). Conclude that the matrix $\left[\left[d G_{P}\right]\right]_{\beta}$ of $d G_{P}$ with respect to the basis $\beta:=\left\{X_{u}(1,2), X_{v}(1,2)\right\}$ of $T_{P} S$ is equal to the matrix in equation (2). Conclude also that the Gaussian curvature of S at P is $\frac{108}{7^{4}}$.
8. Let W be the open subset $u^{2}+(v / 3)^{2}<3$ of \mathbb{R}^{2} and $Y: W \rightarrow \mathbb{R}^{3}$ the function

$$
Y(u, v)=\left(u, 2 \sqrt{3-u^{2}-(v / 3)^{2}}, v\right)
$$

Then Y is another parametrization of an open subset of the ellipsoid S in part 5 and $P=(1,2,3)=Y(1,3)$ is in the image of Y. Define the basis $\beta_{2}:=$ $\left\{Y_{u}(1,3), Y_{v}(1,3)\right\}$ of $T_{P} S$ as in equation (1).
Use your answer in part 7 and Theorem (13.6)' page 104 in the text in order to show that the matrix $\left[\left[d G_{P}\right]\right]_{\beta_{2}}$ of the differential $d G_{P}: T_{P} S \rightarrow T_{P} S$ of the Gauss map, with respect to the new basis β_{2} of $T_{P} S$, is equal to

$$
\left[\left[d G_{P}\right]\right]_{\beta_{2}}=\frac{3}{7^{3}}\left(\begin{array}{cc}
44 & \frac{10}{3} \tag{3}\\
-18 & 12
\end{array}\right)
$$

The moral of this story: The subspace $T_{P} S$ of \mathbb{R}^{3}, the linear transformation $d G_{P}: T_{P} S \rightarrow T_{P} S$, and the Gaussian curvature $\operatorname{det}\left(d G_{P}\right)$, do not depend on the choice of parametrization of S. In contrast, different parametrizations give rize to different 2×2 matrices of $d G_{P}$, such as (2), (3), or yet a third 2×2 matrix that would arise if we choose a parametrization of the ellipsoid S via polar coordinates.

