Math $421 \quad$ Final Exam Spring 2005

Solve problem 1 and only 7 out of problems 2 to 9 . If you solve all 9 , then problem 9 will not be graded. Please fill in: Please do not grade Problem number \qquad . Show all your work. Credit will not be given for an answer without a justification. Calculators may not be used in this exam.

1. (16 points) Given that the Taylor series of $\tan (z)$, centered at 0 , has the form

$$
\begin{equation*}
\tan (z)=z+\frac{1}{3} z^{3}+\frac{2}{15} z^{5}+\cdots \text { terms of order at least seven. } \tag{1}
\end{equation*}
$$

a) Evaluate the fifth derivative $\tan ^{(5)}(0)$ with as little calculations as possible.
b) Find the principal part at $z=0$ of the function $f(z)=\frac{(1+z) \tan (z)}{z^{5}}$
c) Find all the singularities of $f(z)$ (given in part b) in the disk $D=\{|z|<4\}$ and determine their type (isolated, removable, pole of what order, essential).
d) Find the residue at each isolated singularity in D.
2. (12 points) a) Compute $\sin (\pi+i \ln (3))$. Simplify your answer as much as possible. b) Prove that all solutions of the equation $\cos (z)=0$ are real and find all the solutions.
3. (12 points) Compute the integral $\int_{C} \frac{z^{5}}{1-z^{3}} d z$, where C is the circle of radius 2 , centered at 0 , and traversed counterclockwise.
4. (12 points) a) Find the Taylor series of the function $f(z)=\frac{2 z+1}{z^{2}+z-2}=\frac{1}{z-1}+\frac{1}{z+2}$ centered at 0 and determine its radius of convergence. Justify your answer.
b) Find the Laurent series of the function $f(z)$, given in part a), valid in the annulus $1<|z|<2$.
5. (12 points) a) Use the definition of contour integrals to prove the equality

$$
\begin{equation*}
\int_{C} \sin (\bar{z}) d z=\int_{C} \sin (1 / z) d z \tag{2}
\end{equation*}
$$

where C is the circle $\{z:|z|=1\}$, traversed counterclockwise. Caution: The argument of the integrand, on the left hand side, is the complex conjugate \bar{z} of z.
b) Find the Laurent series of $\sin (1 / z)$ centered at zero and classify the type of singularity at $z=0$.
c) Use the equality (2) in order to evaluate the integral $\int_{C} \sin (\bar{z}) d z$.
6. (12 points) Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos (\theta)}
$$

Show all your work!
7. (12 points) Let S_{R} be the upper-semi-circle of radius $R>1$, given by the parametrization $z=R e^{i \theta}, 0 \leq \theta \leq \pi$. Prove the equality

$$
\lim _{R \rightarrow \infty} \int_{S_{R}} \frac{z^{2} d z}{1+z^{4}}=0
$$

Hint: Find first an upper bound for the integral.
8. (12 points) Determine whether the following statements are true or false. Justify your answers!
a) Let C be the circle $\{z:|z|=1\}$, oriented counterclockwise. Assume that $f(z)$ is analytic in the punctured disk $0<|z|<2$, and the integrals $\int_{C} z^{n} f(z) d z$ vanish, for all integers $n \geq 0$. Then 0 is a removable singularity of f.
b) There exists a function $F(z)$, analytic in the punctured unit disk $\{z: 0<|z|<1\}$, whose derivative $f(z):=F^{\prime}(z)$ satisfies $\operatorname{Res}_{z=0}(f(z))=1$.
c) If f is a non-constant entire function and $|f(z)| \leq 2$, for every z on the unit circle $\{z:|z|=1\}$, then f must map the unit disk $\{z:|z|<1\}$ into the disk $\{z:|z|<2\}$.
d) There exists an entire function, whose real part is e^{x+y}.
9. (12 points) Evaluate the improper integral

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

