Math 235 Midterm $2 \quad$ Spring 1999

1. (24 points) You are given below the matrix A together with its row reduced echelon form B
$A=\left(\begin{array}{cccccc}1 & -1 & 0 & 3 & 0 & -1 \\ 2 & -2 & 1 & 8 & 0 & -1 \\ 1 & -1 & 1 & 5 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2\end{array}\right) \quad B=\left(\begin{array}{cccccc}1 & -1 & 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) Find a basis for the null space $\operatorname{Null}(A)$ of A.
b) Find a basis for the column space of A.
c) Is the vector $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ in the column space of A ? Justify your answer!
2. (10 points) Find a basis for the set of vectors in \mathbb{R}^{3} in the plane $x+2 y+z=0$.
3. (24 points) Determine which of the following sets in \mathbb{R}^{n} is a subspace. If it is not, find a property in the definition of a subspace which this set violates. If it is a subspace, find a matrix A such that this set is either $\operatorname{Null}(A)$ or $\operatorname{Col}(A)$.
(a) $\left\{\left[\begin{array}{c}a-b \\ b-c \\ 2 c+3 d \\ c-a\end{array}\right]: a, b, c, d\right.$ are arbitrary real numbers $\}$
(b) $\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x, y, z \quad\right.$ are real numbers satisfying $\left.x=y+2 z+3\right\}$
(c) $\left\{\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]: x, y, z, w\right.$ are real numbers satisfying $\left.\begin{array}{l}x+y=z+w \\ x+z=y+w\end{array}\right\}$
4. (16 points) a) Compute the area of the parallelogram in \mathbb{R}^{2} with vertices $(1,1),(3,4),(6,2),(8,5)$. Caution: note that $(0,0)$ is not a vertex.
b) Compute the volume of the parallelepiped in \mathbb{R}^{3} with vertices
$\overrightarrow{0}, v_{1}, v_{2}, v_{3}, v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3}, v_{1}+v_{2}+v_{3}$ where

$$
v_{1}=\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
0 \\
1 \\
-4
\end{array}\right)
$$

c) Use your answer in part (b) and the algebraic properties of determinants to compute the volume of the parallelepiped obtained if v_{3} is replaced by
$v_{3}^{\prime}=a v_{1}+b v_{2}+c v_{3}$ where a, b, c are real numbers. (Express your answer in terms of $a, b, c)$.
5. a) (4 points) Let A, B, and C be 3×3 matrices satisfying the equation

$$
B=A C A^{-1}
$$

with A invertible. Solve for C in terms of A and B.
b) (8 points) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ Compute its inverse A^{-1}.
c) (4 points) Compute the (2,2) entry of C in part (a) if A is given in part (b) and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & 1 \\ -1 & 0 & 1\end{array}\right)$
6. (10 points) Let \mathbb{P}_{2} be the vector space of polynomials of degree ≤ 2. Recall that a vector in \mathbb{P}_{2} is a polynomial $p(t)$ of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$ where the coefficients a_{0}, a_{1}, a_{2} are arbitrary real numbers.
(a) Show that the subset H of \mathbb{P}_{2} of polynomials $p(t)$ of degree ≤ 2 which in addition satisfy

$$
p(1)=0
$$

is a subspace of \mathbb{P}_{2}. (The straightforward answer would include the definition of a subspace and a verification that H satisfies all the properties.)
(b) Find a basis for H. Explain why the set you found is linearly independent and why it spans H.

