1. (15 points) The matrices A and B below are row equivalent (you do **not** need to check this fact).

$$A = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) What is the rank of A?
- b) Find a basis for the null space Null(A) of A.
- c) Find a basis for the column space of A.
- d) Find a basis for the row space of A.
- 2. (4 points) The null space of the 5×6 matrix A is 2 dimensional. What is the dimension of (a) the Row space of A? (b) the Column space of A? **Justify your answer!**
- 3. (15 points)
 - (a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 4 & -4 & -1 \end{pmatrix}$ is $-(\lambda 1)(\lambda + 1)(\lambda 2)$.
 - (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

- 4. (12 points) Determine for which of the following matrices A below there exists an invertible matrix P (with real entries) such that $P^{-1}AP$ is a diagonal matrix. You do **not** need to find P. **Justify your answer!**
 - (a) $\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$
 - (b) $\begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix}$
 - (c) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- 5. (22 points) Let W be the plane in \mathbb{R}^3 spanned by $v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

Note: Parts 5a, 5b, 5c are mutually independent and are not needed for doing parts 5d, 5e, 5f.

- (a) Find the length of v_1 .
- (b) Find the distance between the two points v_1 and v_2 in \mathbb{R}^3 .
- (c) Find a vector of length 1 which is orthogonal to W.
- (d) Find the projection of v_2 to the line spanned by v_1 .
- (e) Write v_2 as the sum of a vector parallel to v_1 and a vector orthogonal to v_1 .
- (f) Find an orthogonal basis for W.
- 6. (16 points) Let W be the plane in \mathbb{R}^3 spanned by $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $u_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$
 - (a) Find the projection of $b = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ to W.
 - (b) Find the distance from b to W.
 - (c) Find a least square solution to the equation Ax = b where A is the 3×2 matrix with columns u_1 and u_2 . I.e., find a vector x in \mathbb{R}^2 which minimizes the length ||Ax b||.
 - (d) Find the coefficients c_0 , c_1 of the line $y(x) = c_0 + c_1 x$ which best fits the three points $(x_1, y_1) = (-1, 0)$, $(x_2, y_2) = (0, 2)$, $(x_3, y_3) = (1, 1)$ in the x, y plane. The line should minimize the sum $\sum_{i=1}^{3} [y(x_i) y_i]^2$. Justify your answer!
- 7. (16 points) The vectors $v_1 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .8 & .5 \\ .2 & .5 \end{pmatrix}$.
 - (a) The eigenvalue of v_1 is _____

The eigenvalue of v_2 is _____

- (b) Find the coordinates of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.
- (c) Compute $A^{100} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ approaches _____. Justify your answer.

2