1. (18 points) You are given below the matrix A together with its row reduced echelon form C

$$A = \begin{pmatrix} 1 & -1 & -3 & -3 & 0 & -3 \\ 1 & 0 & 2 & 3 & 0 & 4 \\ 2 & 0 & 4 & 6 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 8 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 0 & 2 & 3 & 0 & 4 \\ 0 & 1 & 5 & 6 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Note: you do **not** have to check that A and C are indeed row equivalent.

- a) Determine the rank of A. Explain how it is determined by the matrix C.
- b) Find a basis for the kernel ker(A) of A. Justify your answer!
- c) Find a basis for the image im(A) of A. Justify your answer!
- d) Let \mathcal{B} be the basis you found in part 1c for the image of A and let \vec{a}_6 be the sixth column of A. Find the \mathcal{B} -coordinate vector $[\vec{a}_6]_{\mathcal{B}}$ of \vec{a}_6 .
- 2. (12 points) For which values of the constant k do the vectors below form a basis of \mathbb{R}^3 . Justify your answer!

$$\left(\begin{array}{c}1\\2\\1\end{array}\right),\left(\begin{array}{c}2\\1\\1\end{array}\right),\left(\begin{array}{c}-1\\7\\k\end{array}\right).$$

3. (16 points) Let \vec{v}_1 be a non-zero vector in \mathbb{R}^2 . Recall that the reflection $T: \mathbb{R}^2 \to \mathbb{R}^2$, with respect to the line spanned by \vec{v}_1 , is given by

$$T(\vec{x}) = 2\left(\frac{\vec{x} \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1}\right) \vec{v}_1 - \vec{x}. \tag{1}$$

- (a) Let $\mathcal{B} := \{\vec{v}_1, \vec{v}_2\}$ be a basis of \mathbb{R}^2 such that $\vec{v}_1 \cdot \vec{v}_2 = 0$ (the two vectors are orthogonal). Let T be the reflection with respect to the line spanned by \vec{v}_1 . Express $T(\vec{v}_1)$ and $T(\vec{v}_2)$ in terms of \vec{v}_1 and \vec{v}_2 .
- (b) Use your calculations in part $\ref{eq:condition}$ to find the \mathcal{B} -matrix B of T.
- (c) Assume from now on that T is the reflection with respect to the line spanned by $\vec{v}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Find $T(\vec{e}_1)$ and $T(\vec{e}_2)$, where $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- (d) Use your work in part ?? to show that the matrix of T with respect to the standard basis $\{\vec{e_1}, \vec{e_2}\}$ is $A = \frac{1}{13}\begin{pmatrix} -5 & 12 \\ 12 & 5 \end{pmatrix}$.
- (e) Let $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$ be the basis of \mathbb{R}^2 , where the vector \vec{v}_1 is given in part ?? and $\vec{v}_2 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Note that \vec{v}_1 and \vec{v}_2 are orthogonal $\vec{v}_1 \cdot \vec{v}_2 = 0$. Find a matrix S, such that $S^{-1}AS$ is equal to the \mathcal{B} -matrix B of T you found in part ??, where A is the standard matrix you found in part ??.

- (f) Explicitly verify that the matrices A, B, and S in part ?? satisfy the equality SB = AS, by calculating each side.
- 4. (12 points) Let A be a 5×4 matrix with columns $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$. We are given that

the vector
$$\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$
 belongs to the kernel of A and the vectors $\begin{pmatrix} 5\\4\\3\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 6\\7\\8\\9\\0 \end{pmatrix}$

span the image of A.

- (a) Express \vec{a}_4 as a linear combination of $\vec{a}_1, \vec{a}_2, \vec{a}_3$.
- (b) Determine the dimension of the image of A. Justify your answer.
- (c) Determine the dimension of the kernel of A. Justify your answer.
- 5. (14 points) Let P_2 be the space of all polynomials $a_0 + a_1t + a_2t^2$ of degree ≤ 2 . Find a basis for the subspace W of P_2 consisting of all polynomials f(t) satisfying f'(1) = 0. Explain why the set you found spans W and why it is linearly independent.
- 6. (14 points) Determine which of the following subsets is a subspace by verifying the properties in the definition of a subspace or by showing that one of those properties does not hold.
 - (a) The subset W of all 2×2 matrices A satisfying AB = BA, where $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
 - (b) The subset W of \mathbb{R}^4 consisting of vectors of the form $\begin{pmatrix} x-y\\y-z\\x+z\\y \end{pmatrix}$, where x, y, z are arbitrary real numbers.

7. (14 points)

- (a) Consider a matrix A and let B be the row reduced echelon form of A. Explain why the statement is true or provide a counter example.
 - i. Is ker(A) necessarily equal to ker(B)?
 - ii. Is the image of A necessarily equal to the image of B?
- (b) Let A be a 4×3 matrix and B a 3×4 matrix. Show that $\operatorname{rank}(AB) \leq 3$. Hint: Relate $\operatorname{im}(AB)$ and $\operatorname{im}(A)$?

2