Math 235 Midterm $2 \quad$ Spring 2014

1. (18 points) You are given below the matrix A together with its row reduced echelon form C

$$
A=\left(\begin{array}{cccccc}
1 & -1 & -3 & -3 & 0 & -3 \\
1 & 0 & 2 & 3 & 0 & 4 \\
2 & 0 & 4 & 6 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 8
\end{array}\right) \quad C=\left(\begin{array}{cccccc}
1 & 0 & 2 & 3 & 0 & 4 \\
0 & 1 & 5 & 6 & 0 & 7 \\
0 & 0 & 0 & 0 & 1 & 8 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Note: you do not have to check that A and C are indeed row equivalent.
a) Determine the rank of A. Explain how it is determined by the matrix C.
b) Find a basis for the kernel $\operatorname{ker}(A)$ of A. Justify your answer!
c) Find a basis for the image $\operatorname{im}(A)$ of A. Justify your answer!
d) Let \mathcal{B} be the basis you found in part 1 c for the image of A and let \vec{a}_{6} be the sixth column of A. Find the \mathcal{B}-coordinate vector $\left[\vec{a}_{6}\right]_{\mathcal{B}}$ of \vec{a}_{6}.
2. (12 points) For which values of the constant k do the vectors below form a basis of \mathbb{R}^{3}. Justify your answer!

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
7 \\
k
\end{array}\right) .
$$

3. (16 points) Let \vec{v}_{1} be a non-zero vector in \mathbb{R}^{2}. Recall that the reflection $T: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{2}, with respect to the line spanned by \vec{v}_{1}, is given by

$$
\begin{equation*}
T(\vec{x})=2\left(\frac{\vec{x} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}\right) \vec{v}_{1}-\vec{x} . \tag{1}
\end{equation*}
$$

(a) Let $\mathcal{B}:=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis of \mathbb{R}^{2} such that $\vec{v}_{1} \cdot \vec{v}_{2}=0$ (the two vectors are orthogonal). Let T be the reflection with respect to the line spanned by \vec{v}_{1}. Express $T\left(\vec{v}_{1}\right)$ and $T\left(\vec{v}_{2}\right)$ in terms of \vec{v}_{1} and \vec{v}_{2}.
(b) Use your calculations in part ?? to find the \mathcal{B}-matrix B of T.
(c) Assume from now on that T is the reflection with respect to the line spanned by $\vec{v}_{1}=\binom{2}{3}$. Find $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$, where $\vec{e}_{1}=\binom{1}{0}$ and $\vec{e}_{2}=\binom{0}{1}$.
(d) Use your work in part ?? to show that the matrix of T with respect to the standard basis $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is $A=\frac{1}{13}\left(\begin{array}{cc}-5 & 12 \\ 12 & 5\end{array}\right)$.
(e) Let $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be the basis of \mathbb{R}^{2}, where the vector \vec{v}_{1} is given in part ?? and $\vec{v}_{2}=\binom{3}{-2}$. Note that \vec{v}_{1} and \vec{v}_{2} are orthogonal $\vec{v}_{1} \cdot \vec{v}_{2}=0$. Find a matrix S, such that $S^{-1} A S$ is equal to the \mathcal{B}-matrix B of T you found in part ??, where A is the standard matrix you found in part ??.
(f) Explicitly verify that the matrices A, B, and S in part ?? satisfy the equality $S B=A S$, by calculating each side.
4. (12 points) Let A be a 5×4 matrix with columns $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$. We are given that the vector $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ belongs to the kernel of A and the vectors $\left(\begin{array}{l}5 \\ 4 \\ 3 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}6 \\ 7 \\ 8 \\ 9 \\ 0\end{array}\right)$ span the image of A.
(a) Express \vec{a}_{4} as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$.
(b) Determine the dimension of the image of A. Justify your answer.
(c) Determine the dimension of the kernel of A. Justify your answer.
5. (14 points) Let P_{2} be the space of all polynomials $a_{0}+a_{1} t+a_{2} t^{2}$ of degree ≤ 2. Find a basis for the subspace W of P_{2} consisting of all polynomials $f(t)$ satisfying $f^{\prime}(1)=0$. Explain why the set you found spans W and why it is linearly independent.
6. (14 points) Determine which of the following subsets is a subspace by verifying the properties in the definition of a subspace or by showing that one of those properties does not hold.
(a) The subset W of all 2×2 matrices A satisfying $A B=B A$, where $B=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(b) The subset W of \mathbb{R}^{4} consisting of vectors of the form $\left(\begin{array}{c}x-y \\ y-z \\ x+z \\ y\end{array}\right)$, where x, y, z are arbitrary real numbers.
7. (14 points)
(a) Consider a matrix A and let B be the row reduced echelon form of A. Explain why the statement is true or provide a counter example.
i. Is $\operatorname{ker}(A)$ necessarily equal to $\operatorname{ker}(B)$?
ii. Is the image of A necessarily equal to the image of B ?
(b) Let A be a 4×3 matrix and B a 3×4 matrix. Show that $\operatorname{rank}(A B) \leq 3$. Hint: Relate $\operatorname{im}(A B)$ and $\operatorname{im}(A)$?

