1. (20 points) a) Show that the row reduced echelon form of the augmented matrix of the system $\begin{array}{lll}x_{1}+x_{3}-x_{4}+x_{5} & =1 \\ 3 x_{1}+2 x_{2}+x_{3}-3 x_{4}-x_{5} & =1 \\ x_{1}+x_{2}-x_{4}+x_{5} & =2\end{array}$ is $\left(\begin{array}{cccccc}1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right)$. Use at most seven elementary operations. Show all your work. Clearly write in words each elementary row operation you used.
b) Find the general solution for the system.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=
$$

2. (15 points) You are given that the row reduced echelon form of the matrix $A=\left(\begin{array}{ccccc}2 & 1 & 1 & -2 & 2 \\ 3 & 2 & 1 & -3 & -1 \\ 1 & 1 & 0 & -1 & 1\end{array}\right)$ is $B=\left(\begin{array}{ccccc}1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$. You do not need to verify it.
(a) Write the general solution of the system $A \vec{x}=\overrightarrow{0}$ in parametric form $\vec{x}=$ (first free variable) $\vec{v}_{1}+$ (second free variable) $\vec{v}_{2}+\cdots$
(b) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(\vec{x})=A \vec{x}$. Find a finite set of vectors in $\operatorname{ker}(T)$ which spans $\operatorname{ker}(T)$.
(c) Is the image of T equal to the whole of \mathbb{R}^{3} ? Justify your answer!
3. a) (13 points) Determine for which values of k the 3×3 matrix $A=\left(\begin{array}{lll}1 & 1 & 2+k \\ 1 & 2 & 3+k \\ 1 & 3 & 5+k\end{array}\right)$ is invertible and find the inverse (expressed in terms of the parameter k) for all values of k for which it exists.
b) (2 points) Use matrix multiplication to check that the matrix you found is indeed A^{-1}.
c) (5 points) Let A, B, C, D be $n \times n$ matrices, with A and B invertible, which satisfy the equation $A B C B^{-1} A^{-1}=D$. Express C in terms of A, B, and D. Show all your work.
4. (10 points) Consider a 3×4 matrix A and a 4×5 matrix B. If $\operatorname{ker}(A)=\operatorname{im}(B)$, what can you say about the matrix $A B$? Justify your answer.
5. (20 points) Let L be the line in \mathbb{R}^{2} through the origin and the vector $\vec{v}=\binom{2}{1}$. Recall that the reflection $\operatorname{Re} f_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by the formula

$$
\begin{equation*}
\operatorname{Re} f_{L}(\vec{x})=\frac{2(\vec{x} \cdot \vec{v})}{\vec{v} \cdot \vec{v}} \vec{v}-\vec{x} \tag{1}
\end{equation*}
$$

(a) Use the formula (1) to find the standard matrix A of $R e f_{L}$.
(b) Let M be the line in \mathbb{R}^{2} through the origin and the vector $\vec{v}=\binom{3}{-1}$. The matrix of the reflection $\operatorname{Ref} f_{M}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with respect to the line M is $B:=\frac{1}{5}\left(\begin{array}{cc}4 & -3 \\ -3 & -4\end{array}\right)$. You do not need to verify it. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the composition $T(\vec{x})=\operatorname{Re} f_{L}\left(\operatorname{Re} f_{M}(\vec{x})\right)$. Express the standard matrix C of T in terms of the matrices A and $B . C=$ \qquad .
Use the expression above to show that $C=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
(c) Interpret the matrix C geometrically.
6. (15 points)
(a) Find all the values of k for which the vector $\left(\begin{array}{l}1 \\ 1 \\ k\end{array}\right)$ is a linear combination of the vectors $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$? Justify your answer!
(b) Let A be a 3×2 matrix such that the system $A \vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ has a unique solution. What is the rank of A ? Justify your answer!

