MATH 235 SPRING 2011 FINAL EXAM

1. (18 points)
(a) Consider the complex plane \mathbb{C} as a two dimensional vector space with basis $\beta=\{1, i\}$. Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be multiplication by the complex number $2+3 i$, i.e., $T(z)=(2+3 i) z$. Find the β-matrix of T.
(b) Let $A=\left(\begin{array}{cc}5 & -5 \\ 4 & 1\end{array}\right)$. Find the characteristic polynomial of A and determine the eigenvalues of A.
(c) Find an invertible matrix P, with complex entries, and a diagonal matrix D, such that $P^{-1} A P=D$. Justify your answer!
(d) Find an invertible matrix S, with real entries, and real numbers a, b, such that $S^{-1} A S=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$. Justify your answer.
2. (18 points)
(a) Assume given a 3×3 matrix A and a 3×3 upper triangular matrix $U=$ $\left(\begin{array}{ccc}2 & u_{12} & u_{13} \\ 0 & 3 & u_{23} \\ 0 & 0 & 5\end{array}\right)$. Consider the sequence of row operations
1) Interchange row 1 and row 2 of A to obtain the matrix B.
2) Multiply by $\frac{1}{2}$ row 3 of B to obtain the matrix C.
3) Add -2 times row 1 to row 2 of C to obtain the matrix D.
4) Add row 1 to row 3 of D to obtain the matrix E.
5) Add -3 times row 2 to row 3 of E to obtain the matrix U.

Assume that these elementary row operations reduce A to U. Compute $\operatorname{det}(A)$. Justify your answer!
(b) For which values of the real constants a and b is the matrix $\left(\begin{array}{ll}2 & a \\ 0 & b\end{array}\right)$ diagonalizable? Justify your answer!
(c) Let $\mathbb{R}^{3 \times 3}$ be the vector space of matrices of size 3×3 and $T: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{4}$ a linear transformation. What are all the possible values of $\operatorname{dim}(\operatorname{ker}(T))$? Justify your answer!
3. (a) (5 points) Find all orthogonal matrices of the form $\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & a \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & b \\ \frac{1}{\sqrt{3}} & 0 & c\end{array}\right)$.
(b) (5 points) Let A be an $n \times n$ matrix and A^{T} its transpose. Recall that $\operatorname{det}(A)=$ $\operatorname{det}\left(A^{T}\right)$ and $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any $n \times n$ matrix B. Use the above properties of the determinant to show that if A is an orthogonal $n \times n$ matrix, then $\operatorname{det}(A)$ is equal to 1 or -1 .
4. (18 points) The vectors $v_{1}=\binom{1}{-1}$ and $v_{2}=\binom{6}{7}$ are eigenvectors of the matrix $A=\left(\begin{array}{ll}0.3 & 0.6 \\ 0.7 & 0.4\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad
The eigenvalue of v_{2} is \qquad
(b) Set $w:=\binom{13}{13}$. Find the coordinate vector $[w]_{\beta}$ of w in the basis $\beta:=\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{100}\binom{13}{13}$.
(d) As n gets larger, the vector $A^{n}\binom{13}{13}$ approaches \qquad . Justify your answer.
5. (18 points)
(a) Let P be the vector space of polynomials of arbitrary degree. Consider the transformation $T: P \rightarrow P$, given by $T(f(t))=t^{2} f^{\prime}(t)-2 t f(t)+2 f^{\prime \prime}(t)$. Show that T is linear.
(b) P_{2} the subspace of P of polynomials of degree ≤ 2. Note that T maps P_{2} into P_{2}. Let $S: P_{2} \rightarrow P_{2}$ be given by the same formula above, $S(f(t))=$ $t^{2} f^{\prime}(t)-2 t f(t)+2 f^{\prime \prime}(t)$. Find the matrix of S in the basis $\beta=\left\{1, t, t^{2}\right\}$.
(c) Determine if S is an isomorphism. Justify your answer!
(d) The function $f(t)=t^{2}-2 t+2$ is an eigenvector of S. What is its eigenvalue? Justify your answer!
6. (18 points) Let $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{c}1 \\ 2 \\ 1 \\ 2\end{array}\right)$, and V the subspace of \mathbb{R}^{4} spanned by v_{1} and v_{2}.
(a) Let $w=\left(\begin{array}{c}20 \\ 0 \\ 0 \\ 0\end{array}\right)$. Find the orthogonal projection $\operatorname{Proj}_{V}(w)$ of w to V. Justify your answer!
(b) Write w as a sum of a vector in V and a vector orthogonal to V.
(c) Find the distance from w to V, i.e., the distance from w to the vector in V closest to w.
(d) Let W be the subspace of \mathbb{R}^{4} spanned by the set $\beta:=\left\{v_{1}, v_{2}, w\right\}$. Use the Gram-Schmidt process with the basis β of W to find an orthonormal basis of W. Explain every step of the Gram-Schmidt process you used.

