Practice Problems Math 235 Fall 2010 for Midterm on October 28

1. a: Solve the system of equations using row operations.

$$
\begin{gathered}
x+y-z=6 \\
2 x-y=0 \\
3 x-y-2 z=-3
\end{gathered}
$$

b: Write the above system of equations as a matrix equation.
c: For what vectors $v=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ does the equation $A x=v$ have a solution if $A=$ $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & -1 & 3\end{array}\right)$, and $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
d : What is the rank of the matrix A.
e: What is the dimension of the image of A ? What is the dimension of $\operatorname{ker}(A)$?
2. a: Define what it means for a function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ to be a linear transformation.
b: Are the following linear transformations? Why? Note that the why part of the question is very important.
b1: $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},\binom{x}{y} \mapsto\binom{x+y-1}{3 x-y}$
$\mathrm{b} 2: F: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sin (x)$
$\mathrm{b} 3: F: \mathbb{R}^{3} \rightarrow \mathbb{R}, \vec{v} \mapsto(-1,2,3) \cdot v$.
3. Define the following terms:
a: independence
b: spans a subspace
c: subspace
d: kernel
e: image
f: dimension
g: rank.
You should say what kind of object each term applies to. For example we say "the rank of a matrix" or "of a linear map".
4. : Find the matrix of reflection of \mathbb{R}^{2} about the line $y=2 x$.
5. True or False. You must explain the reason for your answer.
a: Let M be a matrix. If the kernel of M is just the zero vector, then the columns of M are linearly independent.
b: If $u, v, w \in V, V$ a subspace of \mathbb{R}^{n}, then the vector $2 u-3 v+4 w$ is also an element of V.
c: Assume that $\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}$ is an independent set in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. The set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{t}\right)\right\}$ is also independent.
d: There exists a 3×3 matrix M so that $\operatorname{ker}(M)=\operatorname{im}(M)$.
e: If the kernel a a matrix B consists of the $\mathbf{0}$-vector alone, then the column vectors of B are independent.
6. Let A be the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
2 & 1 & 1 & 3 \\
0 & 1 & 3 & 1
\end{array}\right)
$$

a: Find a basis of the kernel of A.
b : Find a basis of the image of A.
c: What is the dimension of the kernel of A ? What is the dimension of the image of A ? Are your answers compatible with the rank nullity theorem? Explain.
7. Find a basis of the plane through the origin and orthogonal to

$$
\left(\begin{array}{c}
-1 \\
4 \\
-1
\end{array}\right)
$$

8. Let

$$
a=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), b=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right), c=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
$$

Express

$$
d=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

as a linear combination of a, b, c.
9. Find a basis of the kernel and image of the following linear transformations:
a: Orthogonal projection of \mathbb{R}^{2} to the line $y=5 x$,
$\mathrm{b}: T: \mathbb{R}^{3} \rightarrow \mathbb{R}, \vec{v} \mapsto(1,2,3) \cdot \vec{v}$,
c: Rotation about the origin of the plane by angle $\pi / 6$.
10. Find a basis of the space of vectors in \mathbb{R}^{3} orthogonal to both $(-1,1,2)$ and $(2,1,0)$.
11. A town has two baseball teams, one named R and one named Y. Each season 60% of the fans of R stick with R and 40% switch to Y. Each season 80% of the fans of Y stick with Y and 20% switch to R. The total number of fans stays constant from
season to season. Let $r(n), y(n)$ denote the number of fans of R, Y during season n. Find a matrix

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

so that

$$
\binom{r(n+1)}{y(n+1)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{r(n)}{y(n)} .
$$

Assume $r(0)=100, y(0)=50$. Compute, using M, the number of fans in season 1 of R, Y, that is, compute $r(1), y(1)$. Compute $r(2), y(2)$.
12. Find the 3×3 matrix that represents rotation of \mathbb{R}^{3} by angle ϕ about the y-axis.
13. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ be a linear map. We are given that

$$
\begin{aligned}
& f(u)=(0,1,2,3,4) \\
& f(v)=(-1,2,6,1,4) .
\end{aligned}
$$

What is $f(2 u-3 v)$?
14. Which of the following are subspaces of the indicated space. Explain your answer.
a: The set of of solutions in \mathbb{R}^{3} to the equation $3 x-y+2 z=1$.
b : The set of vectors in \mathbb{R}^{4} orthogonal to $(1,2,3,-4)$.
15. The matrix M of size 4×6 has kernel with dimension 2 . How many independent column vectors does M have? Why? What is the dimension of the image of M ? Why ?
16. Let

$$
A=\left(\begin{array}{cc}
0 & -1 \\
2 & 0
\end{array}\right), B=\left(\begin{array}{cc}
-1 & -4 \\
4 & 7
\end{array}\right)
$$

Find a 2×2 matrix X so that

$$
A X=B
$$

17. Let

$$
u=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), v=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

a: What vectors

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

are linear combinations of u, v ?
b: Let

$$
m=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

What vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ are in the image of m.
c: Keep m from part b of this question. For what d, e, f can we solve the equation

$$
m X=\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) ?
$$

