Practice Problems Math 235 Fall 2010 for Final Exam

1. a: Let S be a subset of a subspace W of a vector space V. What does it mean for S to be a basis of the subspace W..
b: Is $\left\{1,(t-1),(t-1)^{2},(t-1)^{3}\right\}$ a basis of P_{3}. Here P_{3} denotes the vector space of all polynomials of degree less than or equal to 3 . Why? Note that explaining why is the important part of the question.
2. Let T be the linear transformation from P_{2} to P_{2} given by

$$
f(x) \mapsto f^{\prime \prime}-2 f
$$

Find the matrix of T with respect to the basis $\left\{1, x-1,(x-1)^{2}\right\}$.
3. False or True. (Please justify your answer with a counter example if false; if true, then explain why it is true.)
(a) Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and assume that $\operatorname{ker}(L)=\{0\}$. Then for every $y \in \operatorname{im}(L)$ there is a solution to the equation $L(x)=$ yandthesolutionisunique.
(b) The rank of a linear map $\mathbb{R}^{2011} \rightarrow \mathbb{R}^{2010}$ is at most 2010.
(c) There is a linear map from $\mathbb{R}^{2011} \rightarrow \mathbb{R}^{2010}$ whose kernel is $\{0\}$.
(d) Any set of 2010 vectors in \mathbb{R}^{2011} must be linearly independent.
(e) Reflection about a line in the plane is a linear map represented by a matrix of the form $\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$ where a, b are real numbers satisfying $a^{2}+b^{2}=1$.
(f) Any set of orthonormal (with respect to the usual "dot product") vectors in \mathbb{R}^{n} is linearly independent.
(g) Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, and let $y \in \mathbb{R}^{m}$. Assume that $v \in \operatorname{ker}(L)$ is a solution to $L(x)=0$ and that w is a solution to $L(x)=y$. Then $v+w$ is a solution to $L(x)=y$.
(h) Suppose V is the vector space of all infinitely differentiable functions from \mathbb{R} to \mathbb{R}. The map $F: V \rightarrow V: f(x) \mapsto f^{\prime \prime}(x)-3 f^{\prime}(x)+6 f(x)-9$ is linear.
(i) Every 3×3 matrix has a real eigenvalue and eigenvector.
4. Let P_{2} be the vector space of quadratic polynomials with standard basis $S=\left\{1, t, t^{2}\right\}$, and let $T: P_{2} \rightarrow P_{2}: p(t) \mapsto p^{\prime}(t)+p(t)$.
(a) Verify that T is a linear map.
(b) Compute the matrix $[T]_{S S}$ for T with respect to the basis S.
(c) Is T an isomorphism? (Why or why not?)
(d) Find all polynomials $p(t)$ such that $T(p(t))=1+t+t^{2}$.
5. Let $S=\left\{\binom{1}{0},\binom{0}{1}\right\}$ be the standard basis, and let $B=\left\{\binom{1}{1},\binom{4}{5}\right\}$ be another basis of \mathbb{R}^{2}.
(a) Suppose $v \in \mathbb{R}^{2}$ has coordinates $[v]_{S}=\binom{2}{-3}$ with respect to the standard basis S. What are its coordinates $[v]_{B}$ with respect to B ?
(b) If a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has matrix $[L]_{S S}=\left(\begin{array}{cc}9 & -8 \\ 10 & -9\end{array}\right)$ in the standard basis S, what is its matrix $[L]_{B B}$ in the basis B ?
6. Compute the determinant of the matrix $B=\left(\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 5 & 6 & 0 \\ 0 & 7 & 8 & 0 \\ 3 & 0 & 0 & 4\end{array}\right)$.

Find $\operatorname{det}\left(B^{235}\right)$. If B is invertible, find $\operatorname{det}\left(B^{-1}\right)$.
7. Let $C=\left(\begin{array}{cc}4 & -1 \\ 1 & 2\end{array}\right)$.
(a) Compute the characteristic polynomial of C.
(b) Find the eigenvalues of C and an eigenvector for each eigenvalue.
(c) Is C diagonalizable, that is, can we find an invertible matrix E so that $D=$ $E^{-1} C E$ is diagonal? If so, find such matrices E and D; if not, explain why not.
8. Let $C=\left(\begin{array}{cc}-7 & 3 \\ -18 & 8\end{array}\right)$.
(a) Compute the characteristic polynomial of C.
(b) Find the eigenvalues of C and an eigenvector for each eigenvalue.
(c) Is C diagonalizable, that is, can we find an invertible matrix E so that $D=$ $E^{-1} C E$ is diagonal? If so, find such matrices E and D; if not, explain why not.
9. Let

$$
A=\left(\begin{array}{cc}
1 / 3 & 10 / 3 \\
-4 / 3 & 5 / 3
\end{array}\right)
$$

(a) Compute the characteristic poynomial of A.
(b) Find the eigenvalues and eigenvectors of A.
(c) The eigenvalues are not real. Find a basis B of \mathbb{R}^{2} so that the matrix of A with respect to the basis B is of the form

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

10. Let

$$
Z=\left(\begin{array}{ll}
-8 & 15 \\
-6 & 10
\end{array}\right)
$$

(a) Find the eigenvalues for Z and for each eigenvalue find an eigenvector.
(b) There is a matrix S so that matrix $S^{-1} Z S$ is a matrix of the form $\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ with $a, b \in \mathbb{R}$. What are a, b ? What is S ?

