Practice Problems Math 235 Fall 2010 for Final Exam

- 1. a: Let S be a subset of a subspace W of a vector space V. What does it mean for S to be a basis of the subspace W..
 - b: Is $\{1, (t-1), (t-1)^2, (t-1)^3\}$ a basis of P_3 . Here P_3 denotes the vector space of all polynomials of degree less than or equal to 3. Why? Note that explaining why is the important part of the question.
- 2. Let T be the linear transformation from P_2 to P_2 given by

$$f(x) \mapsto f'' - 2f$$
.

Find the matrix of T with respect to the basis $\{1, x - 1, (x - 1)^2\}$.

- 3. False or True. (Please justify your answer with a counter example if false; if true, then explain why it is true.)
 - (a) Suppose $L: \mathbb{R}^n \to \mathbb{R}^m$ is linear, and assume that $\ker(L) = \{0\}$. Then for every $y \in \operatorname{im}(L)$ there is a solution to the equation L(x) = y and the solution is unique.
 - (b) The rank of a linear map $\mathbb{R}^{2011} \to \mathbb{R}^{2010}$ is at most 2010.
 - (c) There is a linear map from $\mathbb{R}^{2011} \to \mathbb{R}^{2010}$ whose kernel is $\{0\}$.
 - (d) Any set of 2010 vectors in \mathbb{R}^{2011} must be linearly independent.
 - (e) Reflection about a line in the plane is a linear map represented by a matrix of the form $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$ where a, b are real numbers satisfying $a^2 + b^2 = 1$.
 - (f) Any set of orthonormal (with respect to the usual "dot product") vectors in \mathbb{R}^n is linearly independent.
 - (g) Suppose $L: \mathbb{R}^n \to \mathbb{R}^m$ is linear, and let $y \in \mathbb{R}^m$. Assume that $v \in \ker(L)$ is a solution to L(x) = 0 and that w is a solution to L(x) = y. Then v + w is a solution to L(x) = y.
 - (h) Suppose V is the vector space of all infinitely differentiable functions from \mathbb{R} to \mathbb{R} . The map $F: V \to V: f(x) \mapsto f''(x) 3f'(x) + 6f(x) 9$ is linear.
 - (i) Every 3×3 matrix has a real eigenvalue and eigenvector.
- 4. Let P_2 be the vector space of quadratic polynomials with standard basis $S = \{1, t, t^2\}$, and let $T: P_2 \to P_2: p(t) \mapsto p'(t) + p(t)$.
 - (a) Verify that T is a linear map.
 - (b) Compute the matrix $[T]_{SS}$ for T with respect to the basis S.
 - (c) Is T an isomorphism? (Why or why not?)
 - (d) Find all polynomials p(t) such that $T(p(t)) = 1 + t + t^2$.

- 5. Let $S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ be the standard basis, and let $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \end{pmatrix} \right\}$ be another basis of \mathbb{R}^2 .
 - (a) Suppose $v \in \mathbb{R}^2$ has coordinates $[v]_S = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ with respect to the standard basis S. What are its coordinates $[v]_B$ with respect to B?
 - (b) If a linear map $L: \mathbb{R}^2 \to \mathbb{R}^2$ has matrix $[L]_{SS} = \begin{pmatrix} 9 & -8 \\ 10 & -9 \end{pmatrix}$ in the standard basis S, what is its matrix $[L]_{BB}$ in the basis B?
- 6. Compute the determinant of the matrix $B = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 5 & 6 & 0 \\ 0 & 7 & 8 & 0 \\ 3 & 0 & 0 & 4 \end{pmatrix}$.

Find $det(B^{235})$. If B is invertible, find $det(B^{-1})$.

- 7. Let $C = \begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$.
 - (a) Compute the characteristic polynomial of C.
 - (b) Find the eigenvalues of C and an eigenvector for each eigenvalue.
 - (c) Is C diagonalizable, that is, can we find an invertible matrix E so that $D = E^{-1}CE$ is diagonal? If so, find such matrices E and D; if not, explain why not.
- 8. Let $C = \begin{pmatrix} -7 & 3 \\ -18 & 8 \end{pmatrix}$.
 - (a) Compute the characteristic polynomial of C.
 - (b) Find the eigenvalues of C and an eigenvector for each eigenvalue.
 - (c) Is C diagonalizable, that is, can we find an invertible matrix E so that $D = E^{-1}CE$ is diagonal? If so, find such matrices E and D; if not, explain why not.
- 9. Let

$$A = \begin{pmatrix} 1/3 & 10/3 \\ -4/3 & 5/3 \end{pmatrix}.$$

- (a) Compute the characteristic poynomial of A.
- (b) Find the eigenvalues and eigenvectors of A.
- (c) The eigenvalues are not real. Find a basis B of \mathbb{R}^2 so that the matrix of A with respect to the basis B is of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

10. Let

$$Z = \begin{pmatrix} -8 & 15 \\ -6 & 10 \end{pmatrix}.$$

- (a) Find the eigenvalues for Z and for each eigenvalue find an eigenvector.
- (b) There is a matrix S so that matrix $S^{-1}ZS$ is a matrix of the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ with $a,b\in\mathbb{R}$. What are a,b? What is S?