DEPARTMENT OF MATHEMATICS AND STATISTICS
 UNIVERSITY OF MASSACHUSETTS

MATH 235
Final Exam
Fall 2010

Instructions:

- Please use correct notation when writing matrices and vectors.
- In True-or-False questions, please give reasoning or a counter-example. Examples alone are not reasons.
- Explain how you arrived at your answers, please, and show your algebraic calculations. Use the back of the preceding page if necessary.
- Please justify your statements. Unsubstantiated answers receive no credit.
- bf If L is a linear map from a vector space V to V and B is a basis of V, then we denote the matrix of L with respect to the basis B as $[L]_{B B}$. In some sections slightly different notations were used for this.

1: True or False. (Please support your answer with a brief reason or a counter-example.) 1a: Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear. Assume that for all $y \in \mathbb{R}^{n}$ the equation $L x=y$ has a solution. Then the solution is unique.
1 b : Let P_{n} denote the vector space of polynomials of degree less than or equal to n. Let $F: P_{3} \rightarrow P_{2}$ be linear. Then $F(p)=2-3 t^{2}$ has a solution.
1c: Assume that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is a set of three non-zero orthogonal vectors in \mathbb{R}^{3}, so $<u_{i}, u_{j}>=0$ if $i \neq j$. Then S is a basis of \mathbb{R}^{3}.
1 d : Suppose that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and that x_{1}, x_{2} are both solutions to the equation $L x=y$. Then $x_{1}-x_{2}$ is in the kernel of L.
1e: Suppose that P is the vector space of all polynomials in the variable t. Let

$$
T: P \rightarrow P, \quad p(t) \mapsto \frac{d^{2} p}{d t^{2}}-2 \frac{d p}{d t}-3 p+7 .
$$

Then T is linear.
2: Let P_{2} be the vector space of polynomials of degree less than or equal to 2 with basis $S=\left\{1, t, t^{2}\right\}$. Let $T: P_{2} \rightarrow P_{2}: p(t) \mapsto 3 p^{\prime \prime}(t)-2 p^{\prime}(t)+p(t)$.

2a: Verify that T is a linear map.
2b: Compute the matrix of T with respect to the basis S.
2c: Is T an isomorphism? Why?
2d: Find all polynomials $p(t)$ so that $T(p(t))=2-3 t^{2}$.

3: Let $S=\left\{\binom{1}{0},\binom{0}{1}\right\}$ be the standard basis, and let $B=\left\{\binom{2}{3},\binom{1}{2}\right\}$ be another basis of \mathbb{R}^{2}.
3a: Suppose $v \in \mathbb{R}^{2}$ has coordinates $[v]_{S}=\binom{1}{-1}$ with respect to the standard basis S.
What are its coordinates $[v]_{B}$ with respect to B ?
3b: If a linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has matrix

$$
[L]_{S S}=\left(\begin{array}{cc}
9 & -8 \\
10 & -9
\end{array}\right)
$$

in the standard basis S, what is its matrix $[L]_{B B}$ in the basis B ?
4: Compute the determinant of the matrix

$$
B=\left(\begin{array}{cccc}
0 & 1 & 0 & 2 \\
-1 & 3 & 1 & -1 \\
0 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)
$$

Find $\operatorname{det}\left(B^{23}\right)$. Find $\operatorname{det}\left(B^{-1}\right)$ if B is invertible.
5: Let $X=\left(\begin{array}{cc}1 & -4 \\ -16 & -11\end{array}\right)$.
5a: Compute the characteristic polynomial of X.
5b: Find the eigenvalues of X.
5 c : Find the eigenvectors for each eigenvalue.
5d: Is X diagonalizable,that is, can we find a matrix so that $A X A^{-1}$ is a diagonal matrix?
If so find the matrix A. If not explain why not.
6: Let $M=\left(\begin{array}{ll}5 & -5 \\ 2 & -1\end{array}\right)$.
6a: Compute the characteristic polynomial of M.
6b: Find the eigenvalues and eigenvectors of M.
6c: The eigenvalues are not real. Find a basis B of \mathbb{R}^{2} so that the matrix of M with respect to the basis B is of the form

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
$$

7: Let P_{2} denote the vector space of polynomials of degree less than or equal to 2 . Is $S=\left\{1,1-t, 1-t^{2}\right\}$ a basis of P_{2} ? Why? (Note that explaining why is the important part of the question.)

