DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

MATH 235 <u>MIDTERM</u> Fall 2010

1: True or False. (Please support your answer with a brief reason or a counter-example.) 1a: Let M be an $n \times n$ matrix. If the columns of M are independent, then the kernel of M is just the zero vector.

1b: If the set of vectors $\{u, v, w\}$ is independent, then w must be a linear combination of u and v.

1c: The image of a 3×4 matrix M is a subspace of \mathbb{R}^3 .

1d: The function

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + y \end{pmatrix}$$

is linear.

1e: The set of vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ so that $x^2 + y^2 + z^2 = 1$ is a subspace of \mathbb{R}^3 .

2: Consider the following system of equations:

$$-x - z - 2w = 0$$
$$2x + y + 3z + 5w = 3$$
$$-x + y - w = 3$$

2a: Express this as a matrix equation AX = B with A = A and B = A

2b: Find all solutions $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ using row reduction (Gaussian elimination).

3: Find a system of two linear equation that a, b, c, d must satisfy so that

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$$

is in the span of the set of vectors

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

4a: Let $F: \mathbb{R}^n \to \mathbb{R}^m$. Define what it means for F to be linear.

4b: Suppose a linear map $F: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ is given by the matrix

$$\begin{pmatrix} 1 & 1 & 2 & 0 \\ -1 & 0 & -1 & -1 \\ 1 & -2 & -1 & -3 \\ 2 & 1 & 3 & 1 \end{pmatrix}.$$

Find a basis for im(F) and compute the rank of F.

4c: Let F be the map in 4b. Find a basis for ker(F) and compute its dimension (the nullity of F).

5: The image of a matrix M of size 5×5 has dimension 2.

5a: How many independent columns vectors does M have?

5b: What is the dimension of the kernel of M?

5c: Does the equation MX = b have a solution for every $b \in \mathbb{R}^5$? Why?

6a: Find a basis for the subspace $V \subset \mathbb{R}^4$ of all vectors orthogonal to $u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and

$$v = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 1 \end{pmatrix}.$$

6b: What is the dimension of this subspace V in part 6a?

7: Let $f: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map. Let

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \ v = \begin{pmatrix} -2 \\ 4 \\ 0 \\ 4 \end{pmatrix}.$$

Assume that

$$f(u) = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

and that $f(v) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. What is f(u+v)? Explain why.