DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

MATH 235

MIDTERM
Fall 2010

1: True or False. (Please support your answer with a brief reason or a counter-example.) 1a: Let M be an $n \times n$ matrix. If the columns of M are independent, then the kernel of M is just the zero vector.
1 b : If the set of vectors $\{u, v, w\}$ is independent, then w must be a linear combination of u and v.
1 c : The image of a 3×4 matrix M is a subspace of \mathbb{R}^{3}.
1 d : The function

$$
T\binom{x}{y}=\binom{x-y}{x+y}
$$

is linear.
1e: The set of vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}$ so that $x^{2}+y^{2}+z^{2}=1$ is a subspace of \mathbb{R}^{3}.
2: Consider the following system of equations:

$$
\begin{array}{r}
-x-z-2 w=0 \\
2 x+y+3 z+5 w=3 \\
-x+y-w=3
\end{array}
$$

2a: Express this as a matrix equation $A X=B$ with
$A=$
and $B=$
2b: Find all solutions $X=\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)$ using row reduction (Gaussian elimination).
3: Find a system of two linear equation that a, b, c, d must satisfy so that

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right) \in \mathbb{R}^{4}
$$

is in the span of the set of vectors

$$
S=\left\{\left(\begin{array}{c}
1 \\
-1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)\right\}
$$

4a: Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Define what it means for F to be linear.

4b: Suppose a linear map $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ is given by the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
-1 & 0 & -1 & -1 \\
1 & -2 & -1 & -3 \\
2 & 1 & 3 & 1
\end{array}\right)
$$

Find a basis for $\operatorname{im}(F)$ and compute the rank of F.
4 c : Let F be the map in 4 b . Find a basis for $\operatorname{ker}(F)$ and compute its dimension (the nullity of F).
5: The image of a matrix M of size 5×5 has dimension 2 .
5a: How many independent columns vectors does M have?
5 b : What is the dimension of the kernel of M ?
5c: Does the equation $M X=b$ have a solution for every $b \in \mathbb{R}^{5}$? Why?
6a: Find a basis for the subspace $V \subset \mathbb{R}^{4}$ of all vectors orthogonal to $u=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ and
$v=\left(\begin{array}{c}2 \\ -1 \\ 2 \\ 1\end{array}\right)$.
6b: What is the dimension of this subspace V in part 6a?
7: Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear map. Let

$$
u=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right), v=\left(\begin{array}{c}
-2 \\
4 \\
0 \\
4
\end{array}\right)
$$

Assume that

$$
f(u)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

and that $f(v)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$. What is $f(u+v)$? Explain why.

