Exatra problem on projections

Let W be the plane in \mathbb{R}^{3} spanned by $u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$.

1. Find the projection $\operatorname{Proj}_{W}(b)$ of $b=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$ to W.
2. Verify that your answer in part 1 satisfies the definition of $\operatorname{Proj}_{W}(b)$, i.e., show that $b-\operatorname{Proj}_{W}(b)$ is orthogonal to W.
3. Find the distance from b to W.
4. Find a least square solution of the equation $A x=b$, where $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -2 \\ 1 & 1\end{array}\right]$ is the 3×2 matrix with columns u_{1} and u_{2}. I.e., find a vector x in \mathbb{R}^{2} which minimizes the length $\|A x-b\|$. Hint: Solve $A x=\operatorname{Proj}_{W}(b)$.
5. Find the coefficients c_{0}, c_{1} of the line $y(x)=c_{0}+c_{1} x$ which best fits the three points $\left(x_{1}, y_{1}\right)=(1,2),\left(x_{2}, y_{2}\right)=(-2,1),\left(x_{3}, y_{3}\right)=(1,-2)$ in the x, y plane. The line should minimize the sum

$$
\begin{equation*}
\sum_{i=1}^{3}\left[c_{0}+c_{1} x_{i}-y_{i}\right]^{2} \tag{1}
\end{equation*}
$$

Justify your answer!

Hint: Set $\vec{c}:=\binom{c_{0}}{c_{1}}$. Show that the sum in equation (1) is the square of the distance from $A \vec{c}$ to b, where A is the matrix in part 4. Next explain why the solutions to parts 4 and 5 are the same vector in \mathbb{R}^{2}..

