DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 235 SPRING 2011
 EXAM 2

(1) (18 points) You are given below the matrix A together with its row reduced echelon form B

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 2 & 3 & 4 \\
0 & 1 & -1 & 1 & 1 & 4 \\
2 & 0 & 4 & 3 & 5 & 2 \\
3 & 2 & 4 & 6 & 9 & 10
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 2 & 0 & 1 & -2 \\
0 & 1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

You do not need to check that A and B are indeed row equivalent.
(a) Find a basis for the kernel $\operatorname{ker}(A)$ of A.

Solution: The vectors

$$
\left(\begin{array}{r}
-2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{r}
-1 \\
0 \\
0 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
2 \\
-2 \\
0 \\
-2 \\
0 \\
1
\end{array}\right)
$$

are linearly independent vectors in the kernel of A. Since the nullity of A is 3 , the vectors form a basis for the kernel of A.
(b) Find a basis for the image $i m(A)$ of A.

Solution: The vectors

$$
\left(\begin{array}{l}
1 \\
0 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
3 \\
6
\end{array}\right)
$$

form a basis for the image of A since the 3 rd, 5 th and 6 th columns of A are redundant vectors among the columns of A.
(c) Does the vector $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ belong to the image of A ? Use part 1b to minimize your computations. Justify your answer!
Solution: Yes, since

$$
\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)=-\left(\begin{array}{l}
1 \\
0 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{l}
1 \\
1 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{l}
2 \\
1 \\
3 \\
6
\end{array}\right)
$$

(2) (12 points)
(a) Let $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{4}$ be a linear transformation. What are the possible values of $\operatorname{dim}(\operatorname{ker}(T))$? Justify your answer!
Answer: The equality $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(i m(T))=7$ holds, by the Rank-Nullity Theorem. The inequality $\operatorname{dim}(i m(T)) \leq 4$ holds, since $\operatorname{im}(T)$ is a subspace of \mathbb{R}^{4}. Hence, $\operatorname{dim}(\operatorname{ker}(T))=7-\operatorname{dim}(i m(T)) \geq 7-4=3$. The inequality $\operatorname{dim}(\operatorname{ker}(T)) \leq 7$ holds, since $\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{7}. We conclude that $3 \leq \operatorname{dim}(\operatorname{ker}(T)) \leq 7$.
(b) Let A and B be $n \times n$ matrices. Assume that $A B=0$. Show that the image of B is contained in the kernel of A.
Answer: Let \vec{y} be a vector in the image of B. Then $\vec{y}=B \vec{x}$, for some \vec{x} in \mathbb{R}^{n}, by definition of the image of B. The vector \vec{y} is in the kernel of A, if $A \vec{y}=\overrightarrow{0}$. The latter is indeed the case, since we have

$$
A \vec{y}=A(B \vec{x})=(A B) \vec{x}=\overrightarrow{0}
$$

where the rightmost equality follows from the assumption that $A B=0$.
(c) Let A and B be $n \times n$ matrices and assume that the image of B is contained in the kernel of A. Show that $\operatorname{rank}(B) \leq \operatorname{dim}(\operatorname{ker}(A))$. Explain why it follows that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq n$.
Answer: The equality $\operatorname{rank}(B)=\operatorname{dim}(i m(B))$ is the definition of $\operatorname{rank}(B)$. The inequality $\operatorname{dim}(\operatorname{im}(B)) \leq \operatorname{dim}(\operatorname{ker}(A))$ holds, since $\operatorname{im}(B)$ is assumed a subspace of $\operatorname{ker}(A)$. We conclude the inequality $\operatorname{rank}(A)+\operatorname{rank}(B) \leq \operatorname{rank}(A)+\operatorname{dim}(\operatorname{ker}(A))$. Now the right hand side is n, by the Rank-Nullity Theorem. We conclude the inequality $\operatorname{rank}(A)+\operatorname{rank}(B) \leq n$.
(3) (18 points) Let $\vec{v}_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$.
(a) Show that $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ form a basis for the subspace P of \mathbb{R}^{3} orthogonal to \vec{v}_{1}.

Answer: We have that $P=\operatorname{ker} \frac{1}{\sqrt{ } 3}\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$. Since P is the kernel of a 1×3 matrix of rank 1, it is a vector space (Theorem 3.2.2) of dimension $\operatorname{dim} P=3-1=2$ (by the rank-nullity theorem). Geometrically, P is a plane through the origin in \mathbb{R}^{3} with normal vector $\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. We have

$$
v_{1} \cdot v_{2}=\frac{1}{\sqrt{3}}(1-1+0)=v_{1} \cdot v_{3}=0
$$

Hence $v_{2} \in P$ and $v_{3} \in P$. They are linearly independent, since the 3 -rd entry of v_{2} is 0 and the 3 -rd entry of v_{3} is $-1 \neq 0$. (Theorem 3.2 .5, p.117). Since $\operatorname{dim} P=2, \operatorname{span}\left\{v_{2}, v_{3}\right\}=P$.
(b) Consider the basis $\beta:=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ of \mathbb{R}^{3}. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(\vec{x})=\vec{x}-2\left(\vec{v}_{1} \cdot \vec{x}\right) \vec{v}_{1}$. Find the β-matrix B of T (the matrix of T in the basis β). Justify your answer!
Answer: By Theorem 4.3.2, p. 174 (or Definition 3.4.3, p.143) we have

$$
B=\left[\begin{array}{lll}
T\left(v_{1}\right)_{\beta} & T\left(v_{2}\right)_{\beta} & T\left(v_{3}\right)_{\beta}
\end{array}\right] .
$$

By part a), $P=\operatorname{span}\left\{v_{2}, v_{3}\right\}$ and v_{3} is orthogonal to P. The linear transformation T is a reflection with respect to the plane P, hence

$$
T\left(v_{1}\right)=-v_{1}, T\left(v_{2}\right)=v_{2}, T\left(v_{3}\right)=v_{3},
$$

and thus

$$
B=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c) Let S be the 3×3 matrix $\left(\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}\right)$ with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. Express the standard matrix A of T in terms of the matrix S and the matrix B you found in part 3b (You do not need to simplify your answer).
Answer: We have the following commutative diagramme (pp.145, 174)

(see Definition 4.1.3 for L_{β}.) Thus

$$
A=S B S^{-1}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 1 & 0 \\
\frac{1}{\sqrt{3}} & -1 & 1 \\
\frac{1}{\sqrt{3}} & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 1 & 0 \\
\frac{1}{\sqrt{3}} & -1 & 1 \\
\frac{1}{\sqrt{3}} & 0 & -1
\end{array}\right]^{-1}
$$

(4) (18 points) Let $\mathbb{R}^{2 \times 2}$ be the vector space of 2×2 matrices and P an invertible 2×2 matrix. Let $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ be the function sending a matrix M to $T(M)=P^{-1} M P$.
(a) Show that T is a linear transformation.

Sketch of answer: One shows that $T(M+N)=T(M)+T(N)$ and $T(k M)=k T(M)$.
(b) Show that T is an isomorphism by explicitly finding T^{-1}. Carefully justify your answer!

Sketch of answer: We have $T^{-1}(M)=P M P^{-1}$ because $T\left(T^{-1}(M)\right)=M$.
(c) Assume now that $P=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Find the matrix B of T in part 4a in the basis $\beta:=$ $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ of $\mathbb{R}^{2 \times 2}$.
Sketch of answer: First find $P^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$ to compute $T\left(e_{1}\right)=\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right), T\left(e_{2}\right)=$ $\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right), T\left(e_{3}\right)=\left(\begin{array}{cc}-2 & -1 \\ 4 & 2\end{array}\right)$, and $T\left(e_{4}\right)=\left(\begin{array}{cc}-1 & -1 \\ 2 & 2\end{array}\right)$. Then the matrix is

$$
B=\left(\begin{array}{cccc}
2 & 1 & -2 & -1 \\
1 & 1 & -1 & -1 \\
-2 & -1 & 4 & 2 \\
-1 & -1 & 2 & 2
\end{array}\right)
$$

(5) (16 points) Let P_{2} be the vector space of polynomials of degree ≤ 2. (i) Which of the following subsets W of P_{2} are subspaces? In each case verify the three conditions in the definition of a subspace, or demonstrate that one of them is violated.
(ii) Find a basis for those that are subspaces.
(a) $W=\left\{f(t): f^{\prime}(0)=1\right\}$ is the subset of polynomial functions $f(t)$, such that the value of its derivative at $t=0$ is 1 .
(b) $W=\left\{f(t): f(1)=f^{\prime}(2)\right\}$.

Answer:
(a) i) W is not a subspace, since it does not contain the zero polynomial. (If $f(t)=0$, then $\left.f^{\prime}(1)=0 \neq 1\right)$.
ii) not applicable.
(b) i) W is a subspace because
(i) It contains the zero polynomial (If $f(t)=0$, then $f(1)=f^{\prime}(2)=0$).
(ii) It's closed under addition: If $f(t)$ and $g(t)$ are in W, then

$$
(f+g)(1)=f(1)+g(1)=f^{\prime}(2)+g^{\prime}(2)=(f+g)^{\prime}(2)
$$

(iii) It's closed under scalar multiplication: If $f(t)$ is in W and k is a scalar, then

$$
(k f)(1)=k \cdot f(1)=k \cdot f^{\prime}(2)=(k f)^{\prime}(2)
$$

ii) If $f(t)=a+b t+c t^{2}$ then $f(1)=a+b+c$ and $f^{\prime}(2)=b+4 c$, so f is in W if and only if

$$
a+b+c=b+4 c
$$

We see b can be anything and $a=3 c$. So a general element of W is of the form $3 c+b t+c t^{2}=$ $b(t)+c\left(3+t^{2}\right)$ and a basis of W is $\left\{t, 3+t^{2}\right\}$.
(6) (18 points) Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by $T(f(t))=\left[\begin{array}{c}f^{\prime}(0) \\ f(1) \\ f(-1)\end{array}\right]$.

The first entry on the right hand side above is the value of the derivative f^{\prime} at 0 .
(a) Find a basis (consisting of polynomials) for the $\operatorname{kernel} \operatorname{ker}(T)$. Carefully justify why the set you found is a basis.
Solution: Suppose $f(t)=a+b t+c t^{2}$ is in $\operatorname{ker}(T)$. Then $T(f(t))=0$, i.e. $\left[\begin{array}{c}f^{\prime}(0) \\ f(1) \\ f(-1)\end{array}\right]=$ $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. In other words $\left[\begin{array}{c}b \\ a+b+c \\ a-b+c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Solving these three equations, we see that
$b=0$ and $a=-c$, so f is of the form $f(t)=-c+c t^{2}=c\left(-1+t^{2}\right)$. This shows that every polynomial in $\operatorname{ker}(T)$ is a scalar multiple of $-1+t^{2}$, so $\left\{-1+t^{2}\right\}$ is a basis for $\operatorname{ker}(T)$.
(b) Use your answer in part 6a in order to determine the rank and nullity of T. Justify your answer!
Solution: From part (a), nullity $(T)=\operatorname{dim}(\operatorname{ker}(T))=1$. By the rank-nullity theorem, $\operatorname{dim}\left(P_{2}\right)=\operatorname{rank}(T)+\operatorname{nullity}(T)$, i.e. $3=\operatorname{rank}(T)+1$, so $\operatorname{rank}(T)=2$.
(c) Find a basis for the image $\operatorname{im}(T)$. Justify your answer!

Solution: If \vec{v} is in $\operatorname{im}(T)$, then $\vec{v}=T\left(a+b t+c t^{2}\right)$ for some polynomial $a+b t+c t^{2}$. This means

$$
\vec{v}=T\left(a+b t+c t^{2}\right)=\left[\begin{array}{c}
b \\
a+b+c \\
a-b+c
\end{array}\right]=b\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]+(a+c)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

So every element of the image of T is a linear combination of the linearly independent vectors $\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, so a basis for $\operatorname{im}(T)$ is $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.

