1. (15 points) a) Show that the row reduced echelon form of the augmented matrix of the system $\begin{array}{ll}x_{1}+x_{2}+x_{3}+x_{4}+3 x_{5} & =1 \\ 2 x_{1}+x_{2}+x_{4}+4 x_{5} & =1 \\ x_{1}-x_{3}+x_{4}+2 x_{5} & =0\end{array}$ is $\left(\begin{array}{cccccc}1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)$. Use at most seven elementary operations. Show all your work. Clearly write in words each elementary row operation you used.
b) Find the general solution for the system.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=
$$

2. a) (8 points) Find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$.
b) (2 points) Use matrix multiplication to check that the matrix you found is indeed A^{-1}.
c) (5 points) Let A, B, C be $n \times n$ matrices, with A and B invertible, which satisfy the equation $A B C B^{-1}-B=A$. Express C in terms of A and B. Show all your work.
3. (18 points) Recall that two $n \times n$ matrices A and B are said to commute, if $A B=B A$.
(a) Find all 2×2 matrices, which commute with the matrix $A=\left(\begin{array}{ll}2 & 0 \\ 3 & 2\end{array}\right)$.
(b) Let A and B be two $n \times n$ matrices. Show that if A commutes with B and B is invertible, then A commutes with B^{-1}.
4. (17 points) Let A be an $m \times n$ matrix, \vec{b} a non-zero vector in $\mathbb{R}^{n}, \vec{x}_{1}$ a solution of the equation $A \vec{x}=\vec{b}$, and \vec{x}_{h} a solution of the equation $A \vec{x}=\overrightarrow{0}$.
(a) Show that $\vec{x}_{1}+\vec{x}_{h}$ is a solution of the equation $A \vec{x}=\vec{b}$.
(b) Let \vec{x}_{2} be another solution of the system $A \vec{x}=\vec{b}$. Show that $\vec{x}_{2}-\vec{x}_{1}$ is a solution of the system $A \vec{x}=\overrightarrow{0}$.
(c) Let A be the 2×2 matrix of the projection of \mathbb{R}^{2} onto a line L through the origin and a non-zero vector \vec{b}. Let \vec{u} be a unit vector orthogonal to L. Draw a picture describing geometrically the set of solutions \vec{x} of the system $A \vec{x}=\vec{b}$, in terms of \vec{u} and \vec{b}. Then use your work in parts 4 a and 4 b to justify the picture in a paragraph consisting of complete sentences.
5. (20 points) Let L be the line in \mathbb{R}^{2} through the origin and the vector $\vec{v}=\binom{1}{\sqrt{3}}$. Recall that the reflection $\operatorname{Re} f_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by the formula

$$
\begin{equation*}
\operatorname{Re} f_{L}(\vec{x})=\frac{2(\vec{x} \cdot \vec{v})}{\vec{v} \cdot \vec{v}} \vec{v}-\vec{x} \tag{1}
\end{equation*}
$$

(a) Use the formula (1) to find the standard matrix A of $R e f_{L}$.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the rotation of the plane about the origin $\frac{\pi}{3}$ radians (i.e., 60 degrees) counter-clockwise. Find the standard matrix B of the rotation T. Hint: $\cos (\pi / 3)=1 / 2$ and $\sin (\pi / 3)=\sqrt{3} / 2$.
(c) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $S(\vec{x})=\operatorname{Re} f_{L}(T(\vec{x}))$ (i.e., rotation followed by reflection). Express the standard matrix C of S in terms of the matrices A of $R e f_{L}$ and B of T.
$C=$ \qquad
(d) Use the expression in part 5 c to compute the matrix C. Note: The answer is $C=\left(\begin{array}{cc}1 / 2 & \sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right)$
(e) Let \widetilde{L} be the line through the origin and the vector $\vec{w}=\binom{\sqrt{3}}{1}$. The matrix $\underset{\widetilde{L}}{C}$ in part 5 d is the matrix of the reflection $R e f_{\widetilde{L}}$ with respect to this new line \widetilde{L}. You need not prove this fact. Use this fact and your work above in order to express the rotation T in terms of the reflections $R e f_{L}$ and $R e f_{\widetilde{L}}$.
$T(\vec{x})=$ \qquad . Justify your answer!
6. (15 points)
(a) Is the vector $\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ a linear combination of the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)$? Justify your answer!
(b) Let A be a 4×3 matrix such that the system $A \vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ has a unique solution.
i. What is the rank of A ? Justify your answer!
ii. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by $T(\vec{x})=A \vec{x}$. Is the image of T equals the whole of \mathbb{R}^{4} ? Justify your answer!

