Practice Problems: Solutions and hints

1. (8 points) Which of the following subsets $S \subseteq V$ are subspaces of V ? Write $Y E S$ if S is a subspace and $N O$ if S is not a subspace.
a. (2 pts) $\quad S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x \leq y \leq z\right\}$
$N O: S$ is not closed under scalar multiplication. For example, $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \in S$, but $-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right) \notin S$.
b. (2 pts) $\quad S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x+y+z=0\right\}$

YES: $S=\operatorname{ker}\left(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right)$.
c. (2 pts) $\quad S$ is the set of vectors of the form $\left(\begin{array}{c}a+2 b+3 c \\ c \\ 0\end{array}\right)$.
$Y E S: S=\operatorname{im}\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right)$.
d. (2 pts) S is the set polynomials p in \mathcal{P}_{3} such that $p^{\prime}(2)=0$.

YES: $S=\operatorname{ker}(T)$, where $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ is the linear transformation $T(p)=p^{\prime}(2)$.
2. (10 points) Solve the following system of linear equations.

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 4 \\
3 & 1 & 5
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Use Gaussian elimination. The solutions are $\vec{x}=\left(\begin{array}{c}1-t \\ -1-2 t \\ t\end{array}\right)$ for $t \in \mathbb{R}$.
3. (10 points) Solve the following system of linear equations.

$$
\begin{aligned}
x-z & =1 \\
x+2 y+3 z & =11 .
\end{aligned}
$$

Use Gaussian elimination. The solutions are $x=1+t, y=5-2 t, z=t$ for $t \in \mathbb{R}$.
4. (7 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation counterclockwise about the origin in \mathbb{R}^{2} by $\frac{\pi}{4}$ radians or 45°.
a. (3 pts) Compute the matrix that represents T.

The matrix that represents a counterclockwise rotation in \mathbb{R}^{2} by angle θ is given by

$$
A=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] .
$$

It follows that the matrix that represents T is

$$
\left[\begin{array}{cc}
\cos (\pi / 4) & -\sin (\pi / 4) \\
\sin (\pi / 4) & \cos (\pi / 4)
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \text { sqrt2 } 2
\end{array}\right] .
$$

b. (2 pts) Is T an isomorphism?

Yes. An isomorphism is an invertible linear transformation. It is clear that counterclockwise rotation by $\pi / 4$ is an invertible transformation (the inverse is clockwise rotation by $\pi / 4$).
c. (2 pts) Is T diagonalizable?

No. Either argue geometrically that T has no eigenvectors, or show that T has no eigenvalues since the characteristic polynomial, $\lambda^{2}-\sqrt{2} \lambda+1$ has no real roots.
5. (6 points) Let A be a $n \times n$ orthogonal matrix.
a. (2 pts) What is the rank of A ?

Since A preserves lengths, $\operatorname{ker}(A)=\{0\}$. Thus Rank-Nullity theorem implies that $\operatorname{rank}(A)=n$.
b. (2 pts) What are the possible values for $\operatorname{det}(A)$?

Since A is orthogonal, $A^{T} A=I$. It follows that $\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=(\operatorname{det}(A))^{2}=1$. Hence $\operatorname{det}(A)=$ ± 1.
c. (2 pts) If λ is an eigenvalue for A, what are the possible values for λ ?

Since A preserves lengths, if \vec{v} is an eigenvector with associated eigenvalue λ, then $\|A \vec{v}\|=\|\lambda \vec{v}\|=$ $|\lambda|\|\vec{v}\|=\|\vec{v}\|$. It follows that $\lambda= \pm 1$.
6. (13 points) Consider the linear transformation $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $(T(f))(x)=f(2 x-1)$. Let \mathcal{B} be the ordered basis $\mathcal{B}=\left(1, x, x^{2}\right)$.
a. (3 pts) Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(T)$.

$$
\begin{aligned}
A=\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(T) & =\left[\begin{array}{lll}
{[T(1)]_{\mathcal{B}}} & {[T(x)]_{\mathcal{B}}} & {\left[T\left(x^{2}\right)\right]_{\mathcal{B}}}
\end{array}\right] \\
& =\left[\begin{array}{lll}
{[1]_{\mathcal{B}}} & {[2 x-1]_{\mathcal{B}}} & {\left[(2 x-1)^{2}\right]_{\mathcal{B}}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & -4 \\
0 & 0 & 4
\end{array}\right] .
\end{aligned}
$$

b. (3 pts) Compute the eigenvalues of T.

The eigenvalues are the roots of the characteristic polynomial $f_{A}(\lambda)=(1-\lambda)(2-\lambda)(4-\lambda)$. Hence the eigenvalues are 1,2 , and 4
c. (3 pts) Is T diagonalizable?

Yes. T is diagonalizable because it has three distinct eigenvalues.
d. (4 pts) Compute the eigenspaces of T. Make sure your answers are expressed as subspaces of \mathcal{P}_{2}.

Compute E_{λ} as $\operatorname{ker}(A-\lambda I)$. Then convert each E_{λ} to a subspace of \mathcal{P}_{2}. You should get $E_{1}=$ $\operatorname{span}(1), E_{2}=\operatorname{span}(x-1)$, and $E_{4}=\operatorname{span}\left(x^{2}-2 x+1\right)$.
7. (12 points) Two interacting populations of foxes and hares can be modeled by the equations

$$
\begin{aligned}
& h(t+1)=4 h(t)-2 f(t) \\
& f(t+1)=h(t)+f(t) .
\end{aligned}
$$

a. (4 pts) Find a matrix A such that

$$
\binom{h(t+1)}{f(t+1)}=A\binom{h(t)}{f(t)} .
$$

$A=\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right]$.
b. (8 pts) Find a formula for $h(t)$ and $f(t)$.

If we let $\vec{x}(t)=\binom{h(t)}{f(t)}$, then $\vec{x}(t)=A^{t} \vec{x}(0)$. To find closed formulas for $h(t)$ and $f(t)$ we must first diagonalize A. We compute that

$$
f_{A}(\lambda)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3) .
$$

Thus the eigenvalues are 2 and 3 . We must find the associated eigenvectors.

$$
\begin{aligned}
E_{2}=\operatorname{ker}(A-2 I) & =\operatorname{ker}\left(\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\right) \\
& =\operatorname{span}\left\{\binom{1}{1}\right\}, \quad \text { and } \\
E_{3}=\operatorname{ker}(A-3 I) & =\operatorname{ker}\left(\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\right) \\
& =\operatorname{span}\left\{\binom{2}{1}\right\} .
\end{aligned}
$$

It follows that $\vec{x}(t)=S D^{t} S^{-1} \vec{x}(0)$, where $S=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. Thus

$$
\begin{aligned}
&\binom{h(t)}{f(t)}=-\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2^{t} & 0 \\
0 & 3^{t}
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right]\binom{h_{0}}{f_{0}} \quad \text { where } h_{0}=h(0) \text { and } f_{0}=f(0), \\
&=-\left[\begin{array}{cc}
2^{t} & 2\left(3^{t}\right) \\
2^{t} & 3^{t}
\end{array}\right]\binom{h_{0}-2 f_{0}}{-h_{0}+f_{0}} \\
&=-\binom{2^{t}\left(h_{0}-2 f_{0}\right)+2\left(3^{t}\right)\left(-h_{0}+f_{0}\right)}{2^{t}\left(h_{0}-2 f_{0}\right)+3^{t}\left(-h_{0}+f_{0}\right)} \\
&=\binom{-2^{t}\left(h_{0}-2 f_{0}\right)-2\left(3^{t}\right)\left(-h_{0}+f_{0}\right)}{-2^{t}\left(h_{0}-2 f_{0}\right)-3^{t}\left(-h_{0}+f_{0}\right)} . \\
& h(t)=-2^{t}\left(h_{0}-2 f_{0}\right)-2\left(3^{t}\right)\left(-h_{0}+f_{0}\right) \text { and } \quad f(t)=-2^{t}\left(h_{0}-2 f_{0}\right)-3^{t}\left(-h_{0}+f_{0}\right)
\end{aligned}
$$

8. (10 points) Let A be a 3×3 matrix such that

$$
A \vec{x}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

has $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ as solutions. Find another solution. Explain. It follows that $A\left[\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)\right]=A\left(\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Thus $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+c\left(\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right)$ is also a solution to $A \vec{x}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ for every $c \in \mathbb{R}$. For example, $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\left(\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right)=\left(\begin{array}{c}-1 \\ 2 \\ 5\end{array}\right)$ is a solution.
9. (12 points) Let $T: \mathbb{R}^{9 \times 10} \rightarrow \mathbb{R}^{9}$ be the map defined by

$$
T(A)=A \vec{e}_{1} .
$$

a. (4 pts) Show that T is a linear transformation.

We must verify 3 things:

1. $T(Z)=\overrightarrow{0}, \quad$ where Z is the 9×10 zero matrix.

This is clear.
2. $T(A+B)=T(A)+T(B)$

This follows from $T(A+B)=(A+B) \vec{e}_{1}=A \vec{e}_{1}+B e_{1}=T(A)+T(B)$.
3. $T(k A)=k T(A)$

This follows from $T(k A)=(k A) \vec{e}_{1}=k\left(A \vec{e}_{1}\right)=k T(A)$.
b. (4 pts) What is the rank of T ?

The rank can be interpreted as the dimension of the image of T. It is clear that the image of T is all of \mathbb{R}^{9}. Thus the rank if 9 . c. (4 pts) State the Rank-Nullity Theorem and use it to compute the nullity of T.

The Rank-Nullity theorem states that: Given a linear transformation $T: V \rightarrow W$,

$$
\operatorname{rank}(T)+\operatorname{null}(T)=\operatorname{dim}(V) .
$$

Hence, $\operatorname{null}(T)=\operatorname{dim}(V)-\operatorname{rank}(T)=90-9=89$.
10. (12 points)
a. (4 pts) Give the definition of the phrase V is a subspace of \mathbb{R}^{n}.
$V \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if

1. $\overrightarrow{0} \in V$.
2. if $\vec{v}, \vec{w} \in V$, then $\vec{v}+\vec{w} \in V$.
3. if $\vec{v} \in V$ and $k \in \mathbb{R}$, then $k \vec{v} \in V$.
b. (8 pts) Let V be a subspace of \mathbb{R}^{n}. Prove that $V^{\perp}=\left\{\vec{u} \in \mathbb{R}^{n} \mid \vec{u} \cdot \vec{v}=0\right.$ for every $\left.\vec{v} \in V\right\}$ is a subspace of \mathbb{R}^{n}.

We just have to show that V^{\perp} satisfies the conditions above.

1. $\overrightarrow{0} \in V^{\perp}$.
$\overrightarrow{0} \cdot \vec{u}=0$ for every $\vec{u} \in V$.
2. if $\vec{v}, \vec{w} \in V^{\perp}$, then $\vec{v}+\vec{w} \in V^{\perp}$.

If $\vec{v}, \vec{w} \in V^{\perp}$, then $(\vec{v}+\vec{w}) \cdot \vec{u}=\vec{v} \cdot \vec{u}+\vec{w} \cdot \vec{u}=0+0=0$ for every $\vec{u} \in V$.
3. if $\vec{v} \in V$ and $k \in \mathbb{R}$, then $k \vec{v} \in V^{\perp}$.

If $\vec{v} \in V$ and $k \in \mathbb{R}$, then $(k \vec{v}) \cdot \vec{u}=k(\vec{v} \cdot \vec{u})=0$ for every $\vec{u} \in V$.

