Practice Problems: Solutions and hints

- **1.** (8 points) Which of the following subsets $S \subseteq V$ are subspaces of V? Write YES if S is a subspace and NO if S is not a subspace.
 - **a.** (2 pts) $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x \le y \le z \right\}$
- NO: S is not closed under scalar multiplication. For example, $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in S$, but $-\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} \notin S$.
 - **b.** (2 pts) $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y + z = 0 \right\}$
- $YES: S = \ker(\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}).$
 - **c.** (2 pts) S is the set of vectors of the form $\begin{pmatrix} a+2b+3c \\ c \\ 0 \end{pmatrix}$.
- $YES: S = \operatorname{im} \left(\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right).$
 - **d.** (2 pts) S is the set polynomials p in \mathcal{P}_3 such that p'(2) = 0.
- YES: $S = \ker(T)$, where $T : \mathcal{P}_3 \to \mathcal{P}_3$ is the linear transformation T(p) = p'(2).
- 2. (10 points) Solve the following system of linear equations.

$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

- Use Gaussian elimination. The solutions are $\vec{x} = \begin{pmatrix} 1-t \\ -1-2t \\ t \end{pmatrix}$ for $t \in \mathbb{R}$.
- 3. (10 points) Solve the following system of linear equations.

$$x - z = 1$$
$$x + 2y + 3z = 11.$$

- Use Gaussian elimination. The solutions are x = 1 + t, y = 5 2t, z = t for $t \in \mathbb{R}$.
- **4.** (7 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote rotation counterclockwise about the origin in \mathbb{R}^2 by $\frac{\pi}{4}$ radians or 45°.

1

a. (3 pts) Compute the matrix that represents T.

The matrix that represents a counterclockwise rotation in \mathbb{R}^2 by angle θ is given by

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

It follows that the matrix that represents T is

$$\begin{bmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/sqrt2 \end{bmatrix}.$$

b. (2 pts) Is T an isomorphism?

Yes. An isomorphism is an invertible linear transformation. It is clear that counterclockwise rotation by $\pi/4$ is an invertible transformation (the inverse is clockwise rotation by $\pi/4$).

c. (2 pts) Is T diagonalizable?

No. Either argue geometrically that T has no eigenvectors, or show that T has no eigenvalues since the characteristic polynomial, $\lambda^2 - \sqrt{2}\lambda + 1$ has no real roots.

5. (6 points) Let A be a $n \times n$ orthogonal matrix.

a. (2 pts) What is the rank of A?

Since A preserves lengths, $\ker(A) = \{0\}$. Thus Rank-Nullity theorem implies that $\operatorname{rank}(A) = n$.

b. (2 pts) What are the possible values for det(A)?

Since A is orthogonal, $A^T A = I$. It follows that $\det(A^T) \det(A) = (\det(A))^2 = 1$. Hence $\det(A) = \pm 1$.

c. (2 pts) If λ is an eigenvalue for A, what are the possible values for λ ?

Since A preserves lengths, if \vec{v} is an eigenvector with associated eigenvalue λ , then $||A\vec{v}|| = ||\lambda \vec{v}|| = ||\lambda|||\vec{v}|| = ||\vec{v}||$. It follows that $\lambda = \pm 1$.

6. (13 points) Consider the linear transformation $T: \mathcal{P}_2 \to \mathcal{P}_2$ given by (T(f))(x) = f(2x-1). Let \mathcal{B} be the ordered basis $\mathcal{B} = (1, x, x^2)$.

a. (3 pts) Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(T)$.

$$A = \operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(T) = \begin{bmatrix} [T(1)]_{\mathcal{B}} & [T(x)]_{\mathcal{B}} & [T(x^2)]_{\mathcal{B}} \end{bmatrix}$$
$$= \begin{bmatrix} [1]_{\mathcal{B}} & [2x-1]_{\mathcal{B}} & [(2x-1)^2]_{\mathcal{B}} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}.$$

b. (3 pts) Compute the eigenvalues of T.

The eigenvalues are the roots of the characteristic polynomial $f_A(\lambda) = (1 - \lambda)(2 - \lambda)(4 - \lambda)$. Hence the eigenvalues are 1, 2, and 4

c. (3 pts) Is T diagonalizable?

Yes. T is diagonalizable because it has three distinct eigenvalues.

d. (4 pts) Compute the eigenspaces of T. Make sure your answers are expressed as subspaces of \mathcal{P}_2 .

Compute E_{λ} as $\ker(A - \lambda I)$. Then convert each E_{λ} to a subspace of \mathcal{P}_2 . You should get $E_1 = \operatorname{span}(1)$, $E_2 = \operatorname{span}(x-1)$, and $E_4 = \operatorname{span}(x^2 - 2x + 1)$.

7. (12 points) Two interacting populations of foxes and hares can be modeled by the equations

$$h(t+1) = 4h(t) - 2f(t)$$

 $f(t+1) = h(t) + f(t)$.

a. (4 pts) Find a matrix A such that

$$\begin{pmatrix} h(t+1) \\ f(t+1) \end{pmatrix} = A \begin{pmatrix} h(t) \\ f(t) \end{pmatrix}.$$

$$A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}.$$
b. (8 pts) Find a formula for $h(t)$ and $f(t)$.

If we let $\vec{x}(t) = \begin{pmatrix} h(t) \\ f(t) \end{pmatrix}$, then $\vec{x}(t) = A^t \vec{x}(0)$. To find closed formulas for h(t) and f(t) we must first diagonalize A. We compute that

$$f_A(\lambda) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3).$$

Thus the eigenvalues are 2 and 3. We must find the associated eigenvectors.

$$E_2 = \ker(A - 2I) = \ker\left(\begin{bmatrix} 2 & -2 \\ 1 & -1 \end{bmatrix}\right)$$

$$= \operatorname{span}\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}, \text{ and}$$

$$E_3 = \ker(A - 3I) = \ker\left(\begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}\right)$$

$$= \operatorname{span}\left\{\begin{pmatrix} 2 \\ 1 \end{pmatrix}\right\}.$$

It follows that
$$\vec{x}(t) = SD^tS^{-1}\vec{x}(0)$$
, where $S = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Thus

$$\begin{pmatrix} h(t) \\ f(t) \end{pmatrix} = -\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^t & 0 \\ 0 & 3^t \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} h_0 \\ f_0 \end{pmatrix} \text{ where } h_0 = h(0) \text{ and } f_0 = f(0),$$

$$= -\begin{bmatrix} 2^t & 2(3^t) \\ 2^t & 3^t \end{bmatrix} \begin{pmatrix} h_0 - 2f_0 \\ -h_0 + f_0 \end{pmatrix}$$

$$= -\begin{bmatrix} 2^t (h_0 - 2f_0) + 2(3^t)(-h_0 + f_0) \\ 2^t (h_0 - 2f_0) + 3^t(-h_0 + f_0) \end{pmatrix}$$

$$= \begin{bmatrix} -2^t (h_0 - 2f_0) - 2(3^t)(-h_0 + f_0) \\ -2^t (h_0 - 2f_0) - 3^t(-h_0 + f_0) \end{pmatrix}.$$

$$h(t) = -2^{t}(h_0 - 2f_0) - 2(3^{t})(-h_0 + f_0)$$
 and $f(t) = -2^{t}(h_0 - 2f_0) - 3^{t}(-h_0 + f_0)$

8. (10 points) Let A be a 3×3 matrix such that

$$A\vec{x} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

has $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ as solutions. Find another solution. Explain.

It follows that
$$A\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = A \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
. Thus $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + c \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$ is also a solution to $A\vec{x} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ for every $c \in \mathbb{R}$. For example, $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$ is a solution.

9. (12 points) Let $T: \mathbb{R}^{9 \times 10} \to \mathbb{R}^9$ be the map defined by

$$T(A) = A\vec{e}_1.$$

a. (4 pts) Show that T is a linear transformation.

We must verify 3 things:

- 1. $T(Z) = \vec{0}$, where Z is the 9×10 zero matrix. This is clear.
- 2. T(A+B) = T(A) + T(B)This follows from $T(A+B) = (A+B)\vec{e_1} = A\vec{e_1} + Be_1 = T(A) + T(B)$.
- 3. T(kA) = kT(A)This follows from $T(kA) = (kA)\vec{e}_1 = k(A\vec{e}_1) = kT(A)$.

b. (4 pts) What is the rank of T?

The rank can be interpreted as the dimension of the image of T. It is clear that the image of T is all of \mathbb{R}^9 . Thus the rank if 9. **c.** $(4 \ pts)$ State the Rank-Nullity Theorem and use it to compute the nullity of T.

The Rank-Nullity theorem states that: Given a linear transformation $T: V \to W$,

$$rank(T) + null(T) = \dim(V).$$

Hence, null(T) = dim(V) - rank(T) = 90 - 9 = 89.

10. (12 points)

a. (4 pts) Give the definition of the phrase V is a subspace of \mathbb{R}^n .

 $V \subseteq \mathbb{R}^n$ is a subspace of \mathbb{R}^n if

- 1. $\vec{0} \in V$.
- 2. if $\vec{v}, \vec{w} \in V$, then $\vec{v} + \vec{w} \in V$.
- 3. if $\vec{v} \in V$ and $k \in \mathbb{R}$, then $k\vec{v} \in V$.

b. (8 pts) Let V be a subspace of \mathbb{R}^n . Prove that $V^{\perp} = \{\vec{u} \in \mathbb{R}^n \mid \vec{u} \cdot \vec{v} = 0 \text{ for every } \vec{v} \in V\}$ is a subspace of \mathbb{R}^n .

We just have to show that V^{\perp} satisfies the conditions above.

1. $\vec{0} \in V^{\perp}$.

 $\vec{0} \cdot \vec{u} = 0$ for every $\vec{u} \in V$.

2. if $\vec{v}, \vec{w} \in V^{\perp}$, then $\vec{v} + \vec{w} \in V^{\perp}$.

 $\text{If } \vec{v}, \vec{w} \in V^{\perp}, \text{ then } (\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} = 0 + 0 = 0 \text{ for every } \vec{u} \in V.$

3. if $\vec{v} \in V$ and $k \in \mathbb{R}$, then $k\vec{v} \in V^{\perp}$.

If $\vec{v} \in V$ and $k \in \mathbb{R}$, then $(k\vec{v}) \cdot \vec{u} = k(\vec{v} \cdot \vec{u}) = 0$ for every $\vec{u} \in V$.