1. (20 points) You are given below the matrix A together with its row reduced echelon form B

$$A = \begin{pmatrix} 1 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 4 & 2 & 2 & 2 \\ 2 & 1 & 4 & -1 & 1 & 0 \\ 1 & 1 & 3 & 0 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

a) Determine the rank of A, $\dim(\ker(A))$, and $\dim(\operatorname{im}(A))$. Explain how these are determined by the matrix B.

Answer: rank(A) = number of pivots in <math>B = 3.

 $\dim(\ker(A)) = \text{number of free variable } = 6 - 3 = 3.$

 $\dim(im(A)) = \operatorname{rank}(A) = 3.$

b) Find a basis for the kernel ker(A) of A.

Answer: The variables x_3 , x_4 , and x_5 are free. Expressing the basic variables in terms of the free variables, we get that the general solution is:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} -x_3 + x_4 \\ -2x_3 - x_4 - x_5 \\ x_3 \\ x_4 \\ x_5 \\ 0 \end{pmatrix} = x_3 \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = x_5 \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\vec{x}_3\vec{v}_1 + \vec{x}_4\vec{v}_2 + \vec{x}_5\vec{v}_3$. The vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 are clearly linearly independent, and so a basis of $\ker(A)$.

c) Find a basis for the image im(A) of A.

Answer: The pivot columns of A are the first, second, and sixth, so

$$a_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $a_6 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$ are a basis for $im(A)$.

d) Does the vector $b := \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ belong to the image of A? Use part c to minimize your

computations. **Justify** your answer!

Answer: The vector b is a linear combination of the basis elements a_1 , a_2 , a_6 of im(A), if and only if the vector equation $x_1a_1 + x_2a_2 + x_3a_6 = b$ is consistent. Row reduce the augmented matrix:

$$(a_1 a_2 a_6 \mid b) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 We get a pivot in the

rightmost column, so the equation is inconsistent. Hence, b does not belong to im(A).

2. (12 points) Let A be a 4×5 matrix with columns $\vec{a}_1, \ldots, \vec{a}_5$. We are given that the vector

$$\vec{x} := \begin{pmatrix} 3 \\ 2 \\ 1 \\ 4 \\ 5 \end{pmatrix} \text{ belongs to the kernel of } A \text{ and the vectors } v_1 := \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} \text{ and } v_2 := \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

span the image of A

a) Express \vec{a}_5 as a linear combination of \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 .

Answer: $0 = A\vec{x} = 3\vec{a}_1 + 2\vec{a}_2 + \vec{a}_3 + 4\vec{a}_4 + 5\vec{a}_5$. Hence, $a_5 = \frac{-3}{5}\vec{a}_1 - \frac{2}{5}\vec{a}_2 - \frac{1}{5}\vec{a}_3 - \frac{4}{5}\vec{a}_4$.

b) Determine $\dim(\operatorname{im}(A))$. Justify your answer.

Answer: The vectors v_1 and v_2 are linearly independent, since neither one is a scalar multiple of the other, and they span im(A), by assumption, hence they constitute a basis of im(A), consisting of two elements. Thus, $\dim(im(A)) = 2$.

c) Determine $\dim(\ker(A))$. Justify your answer.

Answer: The Rank-Nullity Theorem asserts that $\dim(\ker(A)) + \dim(im(A)) = 5$. Hence, $\dim(\ker(A)) = 5 - \dim(im(A)) = 5 - 2 = 3.$

- 3. (20 points) Let $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\beta := \{v_1, v_2\}$ the basis of \mathbb{R}^2 .
 - (a) Find a vector w in \mathbb{R}^2 , such that the coordinate vector of w with respect to the basis β is $[w]_{\beta} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Answer: $w = 2v_1 + 3v_2 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.
 - (b) Let $w_1 := \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $w_2 := \begin{pmatrix} -3 \\ -4 \end{pmatrix}$. Find the coordinate vectors $[w_1]_{\beta}$ and $[w_2]_{\beta}$ with respect to the basis β .

Answer: $w_1 = 2v_1 + 0v_2$, so $[w_1]_{\beta} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$.

$$w_2 = x_1 v_1 + x_2 v_2$$
, and we find the coefficients x_i by row reduction: $(v_1 v_2 \mid w_2) = \begin{pmatrix} 1 & 0 & -3 \\ 1 & 1 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \end{pmatrix}$. So $[w_2]_{\beta} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$

(c) Let $A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$ and $T : \mathbb{R}^2 \to \mathbb{R}^2$ the linear transformation given by $T(\vec{x}) =$ $A\vec{x}$. Note that $w_1 = T(v_1)$ and $w_2 = T(v_2)$. Use this information and your work in part 3b to find the matrix B of T with respect to the basis β of \mathbb{R}^2 .

Answer:
$$B = ([T(v_1)]_{\beta}[T(v_2)]_{\beta}) = ([w_1]_{\beta}[w_2]_{\beta}) = \begin{pmatrix} 2 & -3 \\ 0 & -1 \end{pmatrix}.$$

- (d) Let \tilde{v}_1, \tilde{v}_2 , be two linearly independent vectors in \mathbb{R}^2 , and $\tilde{S} := (\tilde{v}_1 \tilde{v}_2)$ the 2×2 matrix with \tilde{v}_j as its j-th column. Let B be the matrix of the linear transformation T in part 3c, with respect to the new basis $\tilde{\beta} := \{\tilde{v}_1, \tilde{v}_2\}$. Express \tilde{B} in terms of the matrices A and \widetilde{S} . Answer: $\widetilde{B} = \widetilde{S}^{-1}A\widetilde{S}$
- (e) Let $S := (v_1 v_2) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Express \widetilde{B} in terms of the matrices S, \widetilde{S} , and B. Your final answer should not involve the matrix A. Hint: Express first A in terms of S and B. Then express A in terms of S and B.

Answer: $A = SBS^{-1}$. Substituting the right hand side for A in the answer to part 3d, we get $\widetilde{B} = \widetilde{S}^{-1}SBS^{-1}\widetilde{S}$. The above equality shows that B and \widetilde{B} are similar, since $\widetilde{S}^{-1}S$ is the inverse of $S^{-1}\widetilde{S}$.

- 4. (18 points) Denote the vector space of 2×2 matrices by $R^{2 \times 2}$. Let $A := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ the linear transformation given by T(M) = AM MA.
 - a) Find the matrix B of T in the basis

$$\beta := \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \text{ of } R^{2 \times 2}.$$

$$\begin{split} &\mathbf{Answer:}\\ &T\left(\left(\begin{array}{c} a & b \\ c & d \end{array}\right)\right) = \left(\begin{array}{c} 1 & 0 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} a & b \\ c & d \end{array}\right) - \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} 1 & 0 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{c} -b & 0 \\ a - d & b \end{array}\right).\\ &B = \left(\left[T\left(\left(\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array}\right)\right)\right]_{\beta} \left[T\left(\left(\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}\right)\right)\right]_{\beta} \left[T\left(\left(\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right)\right)\right]_{\beta} \left[T\left(\left(\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array}\right)\right)\right]_{\beta} \right)\\ &= \left(\left[\left(\begin{array}{c} 0 & 0 \\ 1 & 0 \end{array}\right)\right]_{\beta} \left[\left(\begin{array}{c} -1 & 0 \\ 0 & 1 \end{array}\right)\right]_{\beta} \left[\left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right)\right]_{\beta} \left[\left(\begin{array}{c} 0 & 0 \\ -1 & 0 \end{array}\right)\right]_{\beta} \right) = \left(\begin{array}{c} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \end{array}\right). \end{split}$$

- b) Find a basis for ker(B). **Answer:** Row reducing B we get the basis: $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.
- c) Find a basis for ker(T).

Answer: We simply write the elements of $R^{2\times 2}$, whose coordinate vectors we found in part b. $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

d) Find a basis for im(B).

Answer:
$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

e) Find a basis for im(T).

Answer: We simply write the elements of $R^{2\times 2}$, whose coordinate vectors we found in part d. $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

5. (10 points) Let V and W be two vector spaces and $T: V \to W$ a linear transformation from V to W. Let p be a positive integer and $\{f_1, \ldots, f_p\}$ a linearly **dependent** subset of V consisting of p elements. Show the the subset $\{T(f_1), \ldots, T(f_p)\}$ of W is linearly dependent as well. Note: Provide an argument that works for general vector spaces, starting with the definition of linear dependence.

Answer: The set $\{f_1, \ldots, f_p\}$ is linearly dependent, if the equation $0 = c_1 f_1 + \cdots + c_p f_p$, with the scalar coefficients c_i as unknowns, has a solution with at least one non-zero c_i . Choose such a solution and apply T to both sides of the equation to get:

$$0 = T(0) = T(c_1 f_1 + \dots + c_p f_p) = c_1 T(f_1) + \dots + c_p T(f_p),$$

where in the first and last equalities we used the linearity properties of T. We conclude that the equation $0 = c_1 T(f_1) + \cdots + c_p T(f_p)$ has a solution with at least one non-zero c_i . Hence, the subset $\{T(f_1), \ldots, T(f_p)\}$ of W is linearly dependent.

- 6. (20 points) Let $C^{\infty}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} , having derivatives of all orders. Denote by V the subspace of $C^{\infty}(\mathbb{R})$ spanned by the functions $f_1(x) = e^x$, $f_2(x) = e^{2x}$, and $f_3(x) = e^{3x}$. Let $T: V \to \mathbb{R}^3$ be the transformation given by $T(f) := \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix}$.
 - (a) Show that the transformation T is linear. In other words, verify the following identities, for any two elements f, g of V, and for every scalar k.

i.
$$T(f+g) = T(f) + T(g)$$
. Answer: $T(f+g) = \begin{pmatrix} (f+g)(0) \\ (f+g)'(0) \\ (f+g)''(0) \end{pmatrix} = \begin{pmatrix} f(0) + g(0) \\ f'(0) + g'(0) \\ f''(0) + g''(0) \end{pmatrix} = \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix} + \begin{pmatrix} g(0) \\ g'(0) \\ g''(0) \end{pmatrix} = T(f) + T(g)$

ii.
$$T(kf) = kT(f)$$
. Answer: $T(kf) = \begin{pmatrix} kf(0) \\ kf'(0) \\ kf''(0) \end{pmatrix} = k \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix} = kT(f)$.

(b) Show that the subset $\{T(f_1), T(f_2), T(f_3)\}$ of \mathbb{R}^3 is linearly independent. Hint: Recall that the chain rule yields $(e^{2x})' = 2e^{2x}$, $(e^{2x})'' = 2^2e^{2x}$, and so $f_2''(0) = 4$.

Answer:
$$T(f_1) = \begin{pmatrix} e^0 \\ e^0 \\ e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, T(f_2) = \begin{pmatrix} e^0 \\ 2e^0 \\ 4e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix},$$

$$T(f_3) = \begin{pmatrix} e^0 \\ 3e^0 \\ 9e^0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$$
. Row reducing, we get:

$$(T(f_1)T(f_2)T(f_3)) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

We get a pivot in every column, so the columns $T(f_1), T(f_2), T(f_3)$ are linearly independent, and a pivot in every row, so $T(f_1), T(f_2), T(f_3)$ span the whole of \mathbb{R}^3 .

(c) Show that im(T) is the whole of \mathbb{R}^3 .

Answer: $im(T) = \text{span}\{T(f_1), T(f_2), T(f_3)\}$, and the latter was shown to be the whole of \mathbb{R}^3 in the previous part.

(d) Show the the subset $\{e^x, e^{2x}, e^{3x}\}$ of V is linearly independent. Hint: Use part 6b and question 5.

Answer: We argue as in question 5. Suppose $c_1e^x + c_2e^{2x} + c_3e^{3x} = 0$. Applying T to both sides we get

$$c_1T(e^x) + c_2T(e^{2x}) + c_3T(e^{3x}) = \vec{0}.$$

The vectors $T(e^x)$, $T(e^{2x})$, $T(e^{3x})$ in \mathbb{R}^3 are linearly independent, by part 6b. Hence, $c_1 = c_2 = c_3 = 0$. Hence, the subset $\{e^x, e^{2x}, e^{3x}\}$ of V is linearly independent.

(e) Show that $T:V\to\mathbb{R}^3$ is an isomorphism.

Answer: It suffices to show that $\ker(T) = \{0\}$ and $\operatorname{im}(T) = \mathbb{R}^3$. The equality $\operatorname{im}(T) = \mathbb{R}^3$ was shown in part 6c. The Rank-Nullity-Theorem yields the equality $\dim(\ker(T)) + \dim(\operatorname{im}(T)) = \dim(V)$. The set $\{e^x, e^{2x}, e^{3x}\}$ is linearly independent, by part 6d, and spans V, by definition of V, and is thus a basis for V. The vector space V is three-dimensional, having a basis consisting of three elements. Hence, $\dim(\ker(T)) = \dim(V) - \dim(\operatorname{im}(T)) = 3 - 3 = 0$. Thus, $\ker(T) = \{0\}$.