1. (20 points) You are given below the matrix $A$ together with its row reduced echelon form B
$A=\left(\begin{array}{cccccc}1 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 4 & 2 & 2 & 2 \\ 2 & 1 & 4 & -1 & 1 & 0 \\ 1 & 1 & 3 & 0 & 1 & 1\end{array}\right) \quad B=\left(\begin{array}{cccccc}1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) Determine the $\operatorname{rank}$ of $A$, $\operatorname{dim}(\operatorname{ker}(A))$, and $\operatorname{dim}(\operatorname{im}(A))$. Explain how these are determined by the matrix $B$.

Answer: $\operatorname{rank}(A)=$ number of pivots in $B=3$.
$\operatorname{dim}(\operatorname{ker}(A))=$ number of free variable $=6-3=3$.
$\operatorname{dim}(i m(A))=\operatorname{rank}(A)=3$.
b) Find a basis for the $\operatorname{kernel} \operatorname{ker}(A)$ of $A$.

Answer: The variables $x_{3}, x_{4}$, and $x_{5}$ are free. Expressing the basic variables in terms of the free variables, we get that the general solution is:
$\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right)=\left(\begin{array}{c}-x_{3}+x_{4} \\ -2 x_{3}-x_{4}-x_{5} \\ x_{3} \\ x_{4} \\ x_{5} \\ 0\end{array}\right)=x_{3}\left(\begin{array}{c}-1 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)=$
$x_{3} \vec{v}_{1}+x_{4} \vec{v}_{2}+x_{5} \vec{v}_{3}$. The vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are clearly linearly independent, and so a basis of $\operatorname{ker}(A)$.
c) Find a basis for the image $\operatorname{im}(A)$ of $A$.

Answer: The pivot columns of $A$ are the first, second, and sixth, so
$a_{1}=\left(\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right), a_{2}=\left(\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right), a_{6}=\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 1\end{array}\right)$ are a basis for $\operatorname{im}(A)$
d) Does the vector $b:=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ belong to the image of $A$ ? Use part c to minimize your computations. Justify your answer!
Answer: The vector $b$ is a linear combination of the basis elements $a_{1}, a_{2}, a_{6}$ of $i m(A)$, if and only if the vector equation $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{6}=b$ is consistent. Row reduce the augmented matrix:
$\left(a_{1} a_{2} a_{6} \mid b\right)=\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 2 & 2 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}\right) \sim \cdots \sim\left(\begin{array}{cccc}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right)$. We get a pivot in the
rightmost column, so the equation is inconsistent. Hence, $b$ does not belong to $\operatorname{im}(A)$.
2. (12 points) Let $A$ be a $4 \times 5$ matrix with columns $\vec{a}_{1}, \ldots, \vec{a}_{5}$. We are given that the vector
$\vec{x}:=\left(\begin{array}{l}3 \\ 2 \\ 1 \\ 4 \\ 5\end{array}\right)$ belongs to the kernel of $A$ and the vectors $v_{1}:=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ and $v_{2}:=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
span the image of $A$.
a) Express $\vec{a}_{5}$ as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$.

Answer: $0=A \vec{x}=3 \vec{a}_{1}+2 \vec{a}_{2}+\vec{a}_{3}+4 \vec{a}_{4}+5 \vec{a}_{5}$. Hence, $a_{5}=\frac{-3}{5} \vec{a}_{1}-\frac{2}{5} \vec{a}_{2}-\frac{1}{5} \vec{a}_{3}-\frac{4}{5} \vec{a}_{4}$.
b) Determine $\operatorname{dim}(\operatorname{im}(A))$. Justify your answer.

Answer: The vectors $v_{1}$ and $v_{2}$ are linearly independent, since neither one is a scalar multiple of the other, and they span $\operatorname{im}(A)$, by assumption, hence they constitute a basis of $\operatorname{im}(A)$, consisting of two elements. Thus, $\operatorname{dim}(\operatorname{im}(A))=2$.
c) Determine $\operatorname{dim}(\operatorname{ker}(A))$. Justify your answer.

Answer: The Rank-Nullity Theorem asserts that $\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=5$. Hence, $\operatorname{dim}(\operatorname{ker}(A))=5-\operatorname{dim}(\operatorname{im}(A))=5-2=3$.
3. (20 points) Let $v_{1}=\binom{1}{1}, v_{2}=\binom{0}{1}$, and $\beta:=\left\{v_{1}, v_{2}\right\}$ the basis of $\mathbb{R}^{2}$.
(a) Find a vector $w$ in $\mathbb{R}^{2}$, such that the coordinate vector of $w$ with respect to the basis $\beta$ is $[w]_{\beta}=\binom{2}{3}$. Answer: $w=2 v_{1}+3 v_{2}=\binom{2}{5}$.
(b) Let $w_{1}:=\binom{2}{2}$ and $w_{2}:=\binom{-3}{-4}$. Find the coordinate vectors $\left[w_{1}\right]_{\beta}$ and $\left[w_{2}\right]_{\beta}$ with respect to the basis $\beta$.
Answer: $w_{1}=2 v_{1}+0 v_{2}$, so $\left[w_{1}\right]_{\beta}=\binom{2}{0}$.
$w_{2}=x_{1} v_{1}+x_{2} v_{2}$, and we find the coefficients $x_{i}$ by row reduction:
$\left(v_{1} v_{2} \mid w_{2}\right)=\left(\begin{array}{ccc}1 & 0 & -3 \\ 1 & 1 & -4\end{array}\right) \sim\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & -1\end{array}\right)$. So $\left[w_{2}\right]_{\beta}=\binom{-3}{-1}$
(c) Let $A=\left(\begin{array}{ll}5 & -3 \\ 6 & -4\end{array}\right)$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the linear transformation given by $T(\vec{x})=$ $A \vec{x}$. Note that $w_{1}=T\left(v_{1}\right)$ and $w_{2}=T\left(v_{2}\right)$. Use this information and your work in part 3 b to find the matrix $B$ of $T$ with respect to the basis $\beta$ of $\mathbb{R}^{2}$.
Answer: $B=\left(\left[T\left(v_{1}\right)\right]_{\beta}\left[T\left(v_{2}\right)\right]_{\beta}\right)=\left(\left[w_{1}\right]_{\beta}\left[w_{2}\right]_{\beta}\right)=\left(\begin{array}{cc}2 & -3 \\ 0 & -1\end{array}\right)$.
(d) Let $\tilde{v}_{1}$, $\tilde{v}_{2}$, be two linearly independent vectors in $\mathbb{R}^{2}$, and $\widetilde{S}:=\left(\tilde{v}_{1} \tilde{v}_{2}\right)$ the $2 \times 2$ matrix with $\tilde{v}_{j}$ as its $j$-th column. Let $\widetilde{B}$ be the matrix of the linear transformation $T$ in part 3 c, with respect to the new basis $\tilde{\beta}:=\left\{\tilde{v}_{1}, \tilde{v}_{2}\right\}$. Express $\widetilde{B}$ in terms of the matrices $A$ and $\widetilde{S}$. Answer: $\widetilde{B}=\widetilde{S}^{-1} A \widetilde{S}$
(e) Let $S:=\left(v_{1} v_{2}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Express $\widetilde{B}$ in terms of the matrices $S, \widetilde{S}$, and $B$. Your final answer should not involve the matrix $A$. Hint: Express first $A$ in terms of $S$ and $B$. Then express $A$ in terms of $\widetilde{S}$ and $\widetilde{B}$.
Answer: $A=S B S^{-1}$. Substituting the right hand side for A in the answer to part 3 d , we get $\widetilde{B}=\widetilde{S}^{-1} S B S^{-1} \widetilde{S}$. The above equality shows that $B$ and $\widetilde{B}$ are similar, since $\widetilde{S}^{-1} S$ is the inverse of $S^{-1} \widetilde{S}$.
4. (18 points) Denote the vector space of $2 \times 2$ matrices by $R^{2 \times 2}$. Let $A:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ the linear transformation given by $T(M)=A M-M A$.
a) Find the matrix $B$ of $T$ in the basis
$\beta:=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ of $R^{2 \times 2}$.
Answer:
$T\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)-\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}-b & 0 \\ a-d & b\end{array}\right)$.
$B=\left(\left[T\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)\right]_{\beta}\left[T\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)\right]_{\beta}\left[T\left(\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)\right)\right]_{\beta}\left[T\left(\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right)\right]_{\beta}\right)$
$=\left(\left[\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)\right]_{\beta}\left[\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\right]_{\beta}\left[\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right]_{\beta}\left[\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)\right]_{\beta}\right)=\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0\end{array}\right)$.
b) Find a basis for $\operatorname{ker}(B)$. Answer: Row reducing $B$ we get the basis: $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$.
c) Find a basis for $\operatorname{ker}(T)$.

Answer: We simply write the elements of $R^{2 \times 2}$, whose coordinate vectors we found in part b. $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
d) Find a basis for $\operatorname{im}(B)$.

Answer: $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$.
e) Find a basis for $\operatorname{im}(T)$.

Answer: We simply write the elements of $R^{2 \times 2}$, whose coordinate vectors we found in part d. $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
5. (10 points) Let $V$ and $W$ be two vector spaces and $T: V \rightarrow W$ a linear transformation from $V$ to $W$. Let $p$ be a positive integer and $\left\{f_{1}, \ldots, f_{p}\right\}$ a linearly dependent subset of $V$ consisting of $p$ elements. Show the the subset $\left\{T\left(f_{1}\right), \ldots, T\left(f_{p}\right)\right\}$ of $W$ is linearly dependent as well. Note: Provide an argument that works for general vector spaces, starting with the definition of linear dependence.

Answer: The set $\left\{f_{1}, \ldots, f_{p}\right\}$ is linearly dependent, if the equation $0=c_{1} f_{1}+\cdots+c_{p} f_{p}$, with the scalar coefficients $c_{i}$ as unknowns, has a solution with at least one non-zero $c_{i}$. Choose such a solution and apply $T$ to both sides of the equation to get:

$$
0=T(0)=T\left(c_{1} f_{1}+\cdots+c_{p} f_{p}\right)=c_{1} T\left(f_{1}\right)+\cdots+c_{p} T\left(f_{p}\right)
$$

where in the first and last equalities we used the linearity properties of $T$. We conclude that the equation $0=c_{1} T\left(f_{1}\right)+\cdots+c_{p} T\left(f_{p}\right)$ has a solution with at least one non-zero $c_{i}$. Hence, the subset $\left\{T\left(f_{1}\right), \ldots, T\left(f_{p}\right)\right\}$ of $W$ is linearly dependent.
6. (20 points) Let $C^{\infty}(\mathbb{R})$ be the vector space of functions from $\mathbb{R}$ to $\mathbb{R}$, having derivatives of all orders. Denote by $V$ the subspace of $C^{\infty}(\mathbb{R})$ spanned by the functions $f_{1}(x)=e^{x}$, $f_{2}(x)=e^{2 x}$, and $f_{3}(x)=e^{3 x}$. Let $T: V \rightarrow \mathbb{R}^{3}$ be the transformation given by $T(f):=$ $\left(\begin{array}{l}f(0) \\ f^{\prime}(0) \\ f^{\prime \prime}(0)\end{array}\right)$.
(a) Show that the transformation $T$ is linear. In other words, verify the following identities, for any two elements $f, g$ of $V$, and for every scalar $k$.
i. $T(f+g)=T(f)+T(g)$. Answer: $T(f+g)=$

$$
\begin{aligned}
& \left(\begin{array}{c}
(f+g)(0) \\
(f+g)^{\prime}(0) \\
(f+g)^{\prime \prime}(0)
\end{array}\right)=\left(\begin{array}{c}
f(0)+g(0) \\
f^{\prime}(0)+g^{\prime}(0) \\
f^{\prime \prime}(0)+g^{\prime \prime}(0)
\end{array}\right)=\left(\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f^{\prime \prime}(0)
\end{array}\right)+\left(\begin{array}{c}
g(0) \\
g^{\prime}(0) \\
g^{\prime \prime}(0)
\end{array}\right)= \\
& T(f)+T(g)
\end{aligned}
$$

ii. $T(k f)=k T(f)$. Answer: $T(k f)=\left(\begin{array}{c}k f(0) \\ k f^{\prime}(0) \\ k f^{\prime \prime}(0)\end{array}\right)=k\left(\begin{array}{c}f(0) \\ f^{\prime}(0) \\ f^{\prime \prime}(0)\end{array}\right)=k T(f)$.
(b) Show that the subset $\left\{T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)\right\}$ of $\mathbb{R}^{3}$ is linearly independent. Hint: Recall that the chain rule yields $\left(e^{2 x}\right)^{\prime}=2 e^{2 x},\left(e^{2 x}\right)^{\prime \prime}=2^{2} e^{2 x}$, and so $f_{2}^{\prime \prime}(0)=4$.
Answer: $T\left(f_{1}\right)=\left(\begin{array}{c}e^{0} \\ e^{0} \\ e^{0}\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right), T\left(f_{2}\right)=\left(\begin{array}{c}e^{0} \\ 2 e^{0} \\ 4 e^{0}\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$,
$T\left(f_{3}\right)=\left(\begin{array}{c}e^{0} \\ 3 e^{0} \\ 9 e^{0}\end{array}\right)=\left(\begin{array}{c}1 \\ 3 \\ 9\end{array}\right)$. Row reducing, we get:
$\left(T\left(f_{1}\right) T\left(f_{2}\right) T\left(f_{3}\right)\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right) \sim \cdots \sim\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right)$.
We get a pivot in every column, so the columns $T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)$ are linearly independent, and a pivot in every row, so $T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)$ span the whole of $\mathbb{R}^{3}$.
(c) Show that $\operatorname{im}(T)$ is the whole of $\mathbb{R}^{3}$.

Answer: $\operatorname{im}(T)=\operatorname{span}\left\{T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)\right\}$, and the latter was shown to be the whole of $\mathbb{R}^{3}$ in the previous part.
(d) Show the the subset $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ of $V$ is linearly independent. Hint: Use part 6 b and question 5 .
Answer: We argue as in question 5. Suppose $c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}=0$. Applying $T$ to both sides we get

$$
c_{1} T\left(e^{x}\right)+c_{2} T\left(e^{2 x}\right)+c_{3} T\left(e^{3 x}\right)=\overrightarrow{0}
$$

The vectors $T\left(e^{x}\right), T\left(e^{2 x}\right), T\left(e^{3 x}\right)$ in $\mathbb{R}^{3}$ are linearly independent, by part 6 b . Hence, $c_{1}=c_{2}=c_{3}=0$. Hence, the subset $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ of $V$ is linearly independent.
(e) Show that $T: V \rightarrow \mathbb{R}^{3}$ is an isomorphism.

Answer: It suffices to show that $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=\mathbb{R}^{3}$. The equality $\operatorname{im}(T)=\mathbb{R}^{3}$ was shown in part 6c. The Rank-Nullity-Theorem yields the equality $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))=\operatorname{dim}(V)$. The set $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ is linearly independent, by part 6 d , and spans $V$, by definition of $V$, and is thus a basis for $V$. The vector space $V$ is three-dimensional, having a basis consisting of three elements. Hence, $\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(V)-\operatorname{dim}(i m(T))=3-3=0$. Thus, $\operatorname{ker}(T)=\{0\}$.

