1. (15 points) a) Show that the row reduced echelon form of the augmented matrix of the system
$x_{1}+x_{2}+x_{3}+2 x_{4}+3 x_{5}=4$
$x_{2}-x_{3}+x_{4}+x_{5}=4$
$2 x_{1}+4 x_{3}+3 x_{4}+5 x_{5}=2$
is $\left(\begin{array}{cccccc}1 & 0 & 2 & 0 & 1 & -2 \\ 0 & 1 & -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 & 2\end{array}\right)$. Use at most five elementary operations. Show all your work. Clearly write in words each elementary row operation you used.
Answer: Add $-2 R_{1}$ to R_{3}, Add $2 R_{2}$ to R_{3}, Add $-R_{3}$ to R_{2}, Add $-2 R_{3}$ to R_{1}, Add $-R_{2}$ to R_{1}.
b) Find the general solution for the system.

Answer: The free variables are x_{3} and x_{5}.
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}-2 \\ 2 \\ 0 \\ 2 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right)$.
2. (20 points) You are given that the row reduced echelon form of the matrix $A=\left(\begin{array}{cccccc}1 & 0 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & 2 & 0 & 4 \\ 1 & 0 & 2 & -1 & 2 & 0\end{array}\right)$ is $B=\left(\begin{array}{cccccc}1 & 0 & 2 & 0 & 0 & -2 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2\end{array}\right)$. You do not
need to verify this statement.
(a) Write the general solutions of the system $A \vec{x}=\overrightarrow{0}$ in parametric form $\vec{x}=($ first free variable $) \vec{v}_{1}+($ second free variable $) \vec{v}_{2}+\ldots$
Answer: The free variables are x_{3} and x_{6}.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
-2 x_{3}+2 x_{6} \\
x_{3} \\
x_{3} \\
-2 x_{6} \\
-2 x_{6} \\
x_{6}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{6}\left(\begin{array}{c}
2 \\
0 \\
0 \\
-2 \\
-2 \\
1
\end{array}\right) .
$$

(b) Let $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ be the linear transformations given by $T(\vec{x})=A \vec{x}$. Find a basis for the kernel $\operatorname{ker}(T)$. In other words, find a linearly independent set of vectors in $\operatorname{ker}(T)$, which spans $\operatorname{ker}(T)$. Explain why the set you found is linearly independent, and why it spans $\operatorname{ker}(T)$.
Answer: $\operatorname{ker}(T)$ is the set of solutions of the equation $A \vec{x}=\overrightarrow{0}$. The vectors
$v_{1}:=\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $v_{2}:=\left(\begin{array}{c}2 \\ 0 \\ 0 \\ -2 \\ -2 \\ 1\end{array}\right)$ form a basis for $\operatorname{ker}(T)$. We have seen
in part 2a that these two vectors span $\operatorname{ker}(T)$. These two vectors are clearly linearly independent, since none of them is a scalar multiple of the other. Hence, they are a basis.
(c) For each vector in the basis you found in part 2b, write down a corresponding linear relation among the columns of the original matrix A (use the notation a_{i} for the i-th column). Then use each of these relations to find a redundent vector among the columns of A (i.e., a column vector \vec{a}_{i}, which is a linear combination of the preceeding columns $\left.\vec{a}_{1}, \ldots, \vec{a}_{i-1}\right)$.
Answer: The equation $A v_{1}=0$ yields $-2 \vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}=\overrightarrow{0}$, so $\vec{a}_{3}=2 \vec{a}_{2}-\vec{a}_{2}$, and \vec{a}_{3} is redundent.
The equation $A v_{2}=0$ yields $2 \vec{a}_{1}-2 \vec{a}_{4}-2 \vec{a}_{5}+\vec{a}_{6}=0$, so $\vec{a}_{6}=-2 \vec{a}_{1}+2 \vec{a}_{4}+2 \vec{a}_{5}$, and \vec{a}_{6} is redundent.
(d) Is the image of T equal to the whole of \mathbb{R}^{4} ? Justify your answer.

Answer: Yes! The image of T is the set of values of T, i.e., the set of vectors \vec{y} in \mathbb{R}^{4} that can be written in the form $A \vec{x}$ for some vector \vec{x} in \mathbb{R}^{6}. The row reduced echelon form of A has a pivot in every row, so the system $A \vec{x}=\vec{y}$ has a solution \vec{x}, for every vector \vec{y}.
3. (a) (7 points) Let A, B, C be $n \times n$ matrices, with A invertible, which satisfy the equation $A\left(C+I_{n}\right) A^{-1}=B$, where I_{n} is the $n \times n$ identity matrix. Express C in terms of A and B. Show all your work.
Answer: Multiply both sides by A^{-1} of the left and by A on the right to get $C+I_{n}=A^{-1} B A$. Thus, $C=A^{-1} B A-I_{n}$.
(b) (8 points) Let A be an $n \times n$ matrix satisfying $A^{3}+5 A^{2}+2 A-I_{n}=0$, where 0 is the $n \times n$ matrix all of which entries are zero. Show that A is invertible and express A^{-1} in terms of A.
Hint: Rewrite the equation as $A^{3}+5 A^{2}+2 A I_{n}-I_{n}=0$.
Answer: $A^{3}+5 A^{2}+2 A I_{n}=I_{n}$ and we can factor the left hand side to get $A\left(A^{2}+5 A+2 I_{n}\right)=I_{n}$. Hence, $A^{-1}=A^{2}+5 A+2 I_{n}$.
4. (15 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation with standard matrix A. Assume that there exists a unique vector \vec{x} in \mathbb{R}^{3}, such that $T(\vec{x})=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$.
Carfully justify your answers to the following questions.
(a) The rank of A is: 3 .

Reason: A is a 4×3 matrix. The fact that the solution to the above equation is unique means that there aren't any free variables, so A has a pivot position in every column.
(b) Describe geometrically the kernel of T.

Answer: $\operatorname{ker}(T)$ is the set of solutions of the system $A \vec{x}=\overrightarrow{0}$. The zero vector is the unique solution, since A has a pivot position in every column. So $\operatorname{ker}(T)$ is a single point (the origin) in \mathbb{R}^{3}.
(c) Is it true that the equation $A \vec{x}=\vec{y}$ has a unique solution \vec{x}, for every vector \vec{y} in \mathbb{R}^{4} ? Justify!
Answer: This is false. For some choices of vectors \vec{y} in \mathbb{R}^{4} the equation $A \vec{x}=\vec{y}$ will be inconsistent, since A does not have a pivot in every row (there are 4 rows and only three pivots).
5. (a) (8 points) Find the inverse of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 2 & 4\end{array}\right)$.

Answer: $A^{-1}=\left(\begin{array}{ccc}4 & -2 & -3 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$.
(b) (7 points) Find the set of all matrices B, satisfying the matrix equation $B A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right)$.
Answer: $B=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right) A^{-1}=\left(\begin{array}{ccc}5 & -2 & -4 \\ 3 & -1 & -2\end{array}\right)$. We have found the unique such matrix.
6. (20 points +9 bonus points, you got 3 extra points for a correct answer to each of parts $6 \mathrm{a}, 6 \mathrm{~b}, 6 \mathrm{c}$ below) Let L_{θ} be the line in \mathbb{R}^{2} through the origin and the unit vector $\vec{u}=\binom{\cos (\theta)}{\sin (\theta)}$. Recal that the reflection $\operatorname{Re} f_{L_{\theta}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the plane about the line L_{θ} is given by the formula $\operatorname{Ref}_{L_{\theta}}(\vec{x})=2(\vec{u} \cdot \vec{x}) \vec{u}-\vec{x}$.
(a) Use the algebraic properties of the dot product to show that $R e f_{L_{\theta}}$ is a linear transformation. In other words, verify the following identities, for any two vectors \vec{v}, \vec{w} and for every scalar k.
i. $\operatorname{Ref}_{L_{\theta}}(\vec{v}+\vec{w})=\operatorname{Re}_{L_{\theta}}(\vec{v})+\operatorname{Ref}_{L_{\theta}}(\vec{w})$.

Answer: $\operatorname{Ref}_{L_{\theta}}(\vec{v}+\vec{w})=2(\vec{u} \cdot[\vec{v}+\vec{w}]) \vec{u}-[\vec{v}+\vec{w}]=$ $2(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}) \vec{u}-[\vec{v}+\vec{w}]=[2(\vec{u} \cdot \vec{v})-\vec{v}]+[2(\vec{u} \cdot \vec{w})-\vec{w}]=$ $\operatorname{Re} f_{L_{\theta}}(\vec{v})+\operatorname{Re}_{L_{\theta}}(\vec{w})$.
ii. $\operatorname{Ref}_{L_{\theta}}(k \vec{v})=k \operatorname{Re} f_{L_{\theta}}(\vec{v})$.

Answer: $\operatorname{Ref}_{L_{\theta}}(k \vec{v})=2(\vec{u} \cdot(k \vec{v})) \vec{u}-k \vec{v}=k[2(\vec{u} \cdot \vec{v}) \vec{u}-\vec{v}]=k \operatorname{Re} f_{L_{\theta}}(\vec{v})$.
(b) Use the above formula for $\operatorname{Ref}_{L_{\theta}}(\vec{x})$ to show that the standard matrix A of $\operatorname{Re} f_{L_{\theta}}$ is $A=\left(\begin{array}{cc}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right)$. Hint: Recall the identities: $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1, \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta), \sin (2 \theta)=2 \cos (\theta) \sin (\theta)$.
Answer: Let \vec{a}_{1} and \vec{a}_{2} be the two columns of A. Then $\vec{a}_{1}=\operatorname{Ref}_{L_{\theta}}\binom{1}{0}=2\left(\binom{\cos (\theta)}{\sin (\theta)} \cdot\binom{1}{0}\right)\binom{\cos (\theta)}{\sin (\theta)}-\binom{1}{0}=$

$$
\begin{aligned}
& \binom{2 \cos ^{2}(\theta)-1}{2 \cos (\theta) \sin (\theta)}=\binom{2 \cos ^{2}(\theta)-\cos ^{2}(\theta)-\sin ^{2}(\theta)}{2 \cos (\theta) \sin (\theta)}=\binom{\cos (2 \theta)}{\sin (2 \theta)} . \\
& \vec{a}_{2}=\operatorname{Ref}_{L_{\theta}}\binom{0}{1}=2\left(\binom{\cos (\theta)}{\sin (\theta)} \cdot\binom{0}{1}\right)\binom{\cos (\theta)}{\sin (\theta)}-\binom{0}{1}= \\
& \binom{2 \sin (\theta) \cos (\theta)}{2 \sin ^{2}(\theta)-1}=\binom{\sin (2 \theta)}{\sin ^{2}(\theta)-\cos ^{2}(\theta)}=\binom{\sin (2 \theta)}{-\cos (2 \theta)} .
\end{aligned}
$$

(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the composition $T(\vec{x})=\operatorname{Ref}_{L_{\phi}}\left(\operatorname{Ref}_{L_{\theta}}(\vec{x})\right.$), where L_{ϕ} is the line through the origin and $\vec{w}=\binom{\cos (\phi)}{\sin (\phi)}$. Express the standard matrix C of T in terms of the standard matrices A of $\operatorname{Re} f_{L_{\theta}}$ and B of $\operatorname{Re} f_{L_{\phi}}$: $C=\underline{B A}$.
Use this expression to show the equality $C=\left(\begin{array}{cc}\cos (2 \phi-2 \theta) & -\sin (2 \phi-2 \theta) \\ \sin (2 \phi-2 \theta) & \cos (2 \phi-2 \theta)\end{array}\right)$.
Hint: Recall the identities $\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)$ and $\sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)$.
Answer: $C=B A=\left(\begin{array}{cc}\cos (2 \phi) & \sin (2 \phi) \\ \sin (2 \phi) & -\cos (2 \phi)\end{array}\right)\left(\begin{array}{cc}\cos (2 \theta) & \sin (2 \theta) \\ \sin (2 \theta) & -\cos (2 \theta)\end{array}\right)=$ $\left(\begin{array}{ll}{[\cos (2 \phi) \cos (2 \theta)+\sin (2 \phi) \sin (2 \theta)]} & {[\cos (2 \phi) \sin (2 \theta)-\sin (2 \phi) \cos (2 \theta)]} \\ {[\sin (2 \phi) \cos (2 \theta)-\cos (2 \phi) \sin (2 \theta)]} & {[\sin (2 \phi) \sin (2 \theta)+\cos (2 \phi) \cos (2 \theta)]}\end{array}\right)=$ $\left(\begin{array}{cc}\cos (2 \phi-2 \theta) & -\sin (2 \phi-2 \theta) \\ \sin (2 \phi-2 \theta) & \cos (2 \phi-2 \theta)\end{array}\right)$.
(d) The linear transformation T in part 6 c is described more directly as the rotation of the plane about the origin an angle $2 \phi-2 \theta$ counterclockwise. Justify your answer.
Reason: We have seen in class, that the matrix of a rotation of the plane by angle α counterclockwise is given by the matrix $\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$. Part 6 c shows that $\alpha=2 \phi-2 \theta$.

