Justify all your answers. Show all your work!!!

1. (10 points) The matrices A and B below are row equivalent (you do not need to check this fact).

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & -2 & 1 \\
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 2 & -2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for $\operatorname{ker}(A)$.
b) Find a basis for image (A).

The solution is similar to question 1 in midterm 2 .
2. (16 points) Consider the matrix $A=\left(\begin{array}{ccc}-1 & -2 & -4 \\ 0 & 0 & -1 \\ 0 & 2 & 3\end{array}\right)$.
(a) Show that the characteristic polynomial of A is $-(\lambda-1)(\lambda+1)(\lambda-2)$.

Answer: $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}-1-\lambda & -2 & -4 \\ 0 & -\lambda & -1 \\ 0 & 2 & 3-\lambda\end{array}\right)$. Now use the co-factor (Laplace) expansion along the first column to get $\operatorname{det}(A-\lambda I)=-(\lambda+1)\left[\lambda^{2}-3 \lambda+2\right]=-(\lambda-1)(\lambda+1)(\lambda-2)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.

Answer: The eigenvalues are the roots of the characteristoc polynomial $\lambda_{1}=$ $-1, \lambda_{2}=1, \lambda_{3}=2$.
The 1-eigenspace: $\operatorname{ker}(A-1 I)=\operatorname{ker}(A-I)=\operatorname{ker}\left(\begin{array}{ccc}-2 & -2 & -4 \\ 0 & -1 & -1 \\ 0 & 2 & 2\end{array}\right)$. Row reducing, we get that the row reduced echelon form of $A-I$ is $\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$.
We see that x_{3} is a free variable, $x_{1}=-x_{3}, x_{2}=-x_{3}$, and so the general vector in $\operatorname{ker}(A-I)$ has the from $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-x_{3} \\ -x_{3} \\ x_{3}\end{array}\right)=x_{3}\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$. The 1-eigenspace is thus spanned by $v_{1}:=\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$.
The -1-eigenspace: $\operatorname{ker}(A-(-1) I)=\operatorname{ker}(A+I)$ is shown similarly to be spanned by $v_{2}:=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

The 2-eigenspace: $\operatorname{ker}(A-2 I)$ is shown similarly to be spanned by $v_{3}:=$ $\left(\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right)$.
(c) Find an invertible matrix S and a diagonal matrix D such that the matrix A above satisfies $S^{-1} A S=D$

Answer: A theorem we prove in class tells us that if we take the union of the bases for all the eigenspaces, we get a linearly independent set. The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is thus linearly independent, and since it consists of three vectors, it is a basis of \mathbb{R}^{3}.
The Diagonalization Theorem states that the matrix A is diagonalizable, if and only if there exists a basis of R^{3} consisting of eigenvectors of A. Furthermore, if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is such a basis, and we let $S=\left(v_{1} v_{2} v_{2}\right)$ be the matrix, whose j-th column is v_{j}, then $S^{-1} A S$ is a diagonal matrix, whose (j, j) diagonal entry is the eigen-value λ_{j} of v_{j}.
We can thus take $S=\left(\begin{array}{ccc}-1 & 1 & -2 \\ -1 & 0 & -1 \\ 1 & 0 & 2\end{array}\right)$ and $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
3. (16 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$ are eigenvectors of the $\operatorname{matrix} A=\left(\begin{array}{cc}.7 & .3 \\ .3 & .7\end{array}\right)$.
(a) The eigenvalue of v_{1} is $_$__ , since $A v_{1}=\left(\begin{array}{ll}.7 & .3 \\ .3 & .7\end{array}\right)\binom{1}{1}=\binom{1}{1}=v_{1}$. The eigenvalue of v_{2} is $\underline{0.4}$, since $A v_{2}=0.4 v_{2}$.
(b) Set $w:=\binom{1}{2}$. Find the coordinate vector $[w]_{\beta}$ of w in the basis $\beta:=$ $\left\{v_{1}, v_{2}\right\}$.
Answer: Row reduce $\left(v_{1} v_{2} \mid w\right)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 2\end{array}\right) \sim \cdots \sim\left(\begin{array}{ccc}1 & 0 & 3 / 2 \\ 0 & 1 & 1 / 2\end{array}\right)$. We see that $w=(3 / 2) v_{1}-(1 / 2) v_{2}$.
(c) Compute $A^{100}\binom{1}{2}$.

Answer: $A^{100} w=A^{100}\left[(3 / 2) v_{1}-(1 / 2) v_{2}\right]=1^{100}(3 / 2) v_{1}-(0.4)^{100}(1 / 2) v_{2}=$ $\binom{(3 / 2)-(1 / 2)(.4)^{100}}{(3 / 2)+(1 / 2)(.4)^{100}}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{2}$ approaches $\xlongequal[(3 / 2) v_{1} \ldots]{ }$. Justify your answer.

Answer:Using the fact that $\lim _{n \rightarrow \infty}(.4)^{n}=0$, we get

$$
A^{n} w=A^{n}\left[(3 / 2) v_{1}-(1 / 2) v_{2}\right]=(3 / 2) v_{1}-(0.4)^{n}(1 / 2) v_{2} \xrightarrow{n \rightarrow \infty}(3 / 2) v_{1}=\binom{1.5}{1.5}
$$

4. (16 points) Let V be the plane in \mathbb{R}^{3} spanned by $v_{1}:=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $v_{2}:=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
(a) Find the orthogonal projection $\operatorname{proj}_{V}(w)$ of $w=\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)$ into V.

Answer: We check first that $\beta:=\left\{v_{1}, v_{2}\right\}$ is an orthogonal basis for V. The set β spans V, by definition of V, and it consists of non-zero vectors, so it suffices to check that the set is orthogonal. Indeed, $v_{1} \cdot v_{2}=0$. We can now apply the formula for the projection

$$
\operatorname{proj}_{V}(w)=\frac{\left(w \cdot v_{1}\right)}{\left(v_{1} \cdot v_{1}\right)} v_{1}+\frac{\left(w \cdot v_{2}\right)}{\left(v_{2} \cdot v_{2}\right)} v_{2}=3 v_{1}+2 v_{2}=\left(\begin{array}{l}
5 \\
1 \\
5
\end{array}\right)
$$

(b) Write w as a sum of a vector in V and a vector orthogonal to V.

Answer: By definition of the projection to $V, \operatorname{proj}_{V}(w)$ is the vector in V, such that $w-\operatorname{proj}_{V}(w)$ is orthogonal to V, and in particular to $\operatorname{proj}_{V}(w)$. Thus, $w=\operatorname{proj}_{V}(w)+\left[w-\operatorname{proj}_{V}(w)\right]=\left(\begin{array}{c}5 \\ 1 \\ 5\end{array}\right)+\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)$ is such a sum.
(c) Find the distance from w to V (i.e., to the vector in V closest to w).

Answer: The point in V closest to w is $\operatorname{proj}_{V}(w)$. Thus the distence from w to V is $\left\|w-\operatorname{proj}_{V}(w)\right\|=\sqrt{2^{2}+0^{2}+(-2)^{2}}=\sqrt{8}$.
5. (16 points)
(a) Let A and S be two $n \times n$ matrices with real coefficients with S invertible. Then the columns v_{1}, \ldots, v_{n} of S form a basis of \mathbb{R}^{n}. Complete the following sentence: The matrix $S^{-1} A S$ is diagonal with d_{i} as its (i, i)-entry, if and only if for all $1 \leq i \leq n$, the vector v_{i} is an eigen-vector of A with eigen-value d_{i}.
(b) For what values of θ is the matrix $A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ diagonalizable? I.e., for what values of θ does there exist some invertible 2×2 matrix S with real coefficients, such that $S^{-1} A S$ is diagonal? Justify your answer!
Answer: Method A: The characteristic polynomial of A is $\operatorname{det}\left(\begin{array}{cc}\cos (\theta)-\lambda & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)-\lambda\end{array}\right)=\lambda^{2}-2 \cos (\theta) \lambda+1$. Its discriminat $4 \cos ^{2}(\theta)-4$ is negative, unless $\cos (\theta)= \pm 1$, i.e., $\theta=n \pi$, for some integer n. If $\theta=n \pi$, then $A= \pm I$ is diagonal. Otherwise, the characteristic polynomial does not have any real root, so A does not have any real eigenvalues, and is thus not similar to a diagonal matrix with real entries (not diagonalizable).
Method B: We can also argue geometrically and arrive at the same conclusion. I.e., A is diagonalizable, if and only if it is rotation by angle 0 (the identity) or by andle π (so $A=-I$), since otherwise for every non-zero vector v in \mathbb{R}^{2}, v and $A v$ do not lie on a line through the origin, so $A v$ is not a scalar multiple of v (so A does not have any eigen-vectors).
(c) For what values of k is the matrix $\left(\begin{array}{ll}2 & 0 \\ k & 2\end{array}\right)$ diagonalizable? Justify your answer!

Answer: The matrix is lower triangular, so its eigen-values are its diagonal entries. In our case, the only eigen-value is $2 . A$ is diagonalizable, if and only if the 2 -eigen-space is 2-dimensional, if and only if $\operatorname{ker}(A-2 I)$ is 2 -dimensional, if and only if $\operatorname{ker}\left(\begin{array}{ll}0 & 0 \\ k & 0\end{array}\right)$ is 2-dimensional, if and only if $\operatorname{rank}\left(\begin{array}{cc}0 & 0 \\ k & 0\end{array}\right)=0$,
if and only if $k=0$.
6. (10 points)

Let V be the subspace of \mathbb{R}^{4} spanned by $v_{1}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}3 \\ 1 \\ 3 \\ -1\end{array}\right)$.
(a) Use the Gram-Schmidt process to find an orthonormal basis for V.

Answer: Take $u_{1}:=\frac{1}{\left\|v_{1}\right\|} v_{1}, \tilde{u}_{2}:=v_{2}-\operatorname{proj}_{v_{1}}\left(v_{2}\right)$, and $u_{2}:=\frac{1}{\left\|\tilde{u}_{2}\right\|} \tilde{u}_{2}$. Then $\left\{u_{1}, u_{2}\right\}$ is an orthonormal basis for V. Calculating, we get:

$$
\begin{aligned}
& u_{1}=\frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right), \operatorname{proj}_{v_{1}}\left(v_{2}\right)=\frac{\left(v_{1} \cdot v_{2}\right)}{\left(v_{1} \cdot v_{1}\right)} v_{1}=2 v_{1}=\left(\begin{array}{c}
2 \\
2 \\
2 \\
-2
\end{array}\right), \\
& \tilde{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right), u_{2}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right) .
\end{aligned}
$$

(b) Find a basis for the orthogonal complement V^{\perp} of V in R^{4}.

Answer: The orthogonal complement V^{\perp} of V is the kernel of $\left(\begin{array}{cccc}1 & 1 & 1 & -1 \\ 3 & 1 & 3 & -1\end{array}\right)$. Row reducing, we find that $w_{1}:=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $w_{2}:=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ 1\end{array}\right)$ form a basis of V^{\perp}.
7. (16 points) Let P_{3} be the vector space of polynomials of degree ≤ 3 with real coefficients. Let $T: P_{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by
$T(f)=\left(\begin{array}{c}f(1) \\ f(2) \\ f(3) \\ f(4)\end{array}\right)$. Consider the following four polynomials in P_{3} :
$f_{1}(x)=\frac{-1}{6}(x-2)(x-3)(x-4), \quad f_{2}(x)=\frac{1}{2}(x-1)(x-3)(x-4)$,
$f_{3}(x)=\frac{-1}{2}(x-1)(x-2)(x-4), \quad f_{4}(x)=\frac{1}{6}(x-1)(x-2)(x-3)$.

Let $U: \mathbb{R}^{4} \rightarrow P_{3}$ be the linear transformation given by
$U\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)+c_{4} f_{4}(x)$.
(a) Show that the composition $T U: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is the identity linear transformation. In other words, show that $T(U(\vec{x}))=\vec{x}$, for all \vec{x} in \mathbb{R}^{4}.
Answer: A straightforward calculation shows that $T\left(f_{i}\right)=e_{i}$, where e_{i} is the i-th column of the 4×4 identity matrix. For example

$$
T\left(f_{1}\right)=\left(\begin{array}{c}
f_{1}(1) \\
f_{1}(2) \\
f_{1}(3) \\
f_{1}(4)
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) . \text { Thus, } T\left(U\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{3}
\end{array}\right)\right)=
$$

$T\left(c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}+c_{4} f_{4}\right)=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+c_{3} T\left(f_{3}\right)+c_{4} T\left(f_{4}\right)=\left(\begin{array}{c}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)$.
(b) Show that T is an isomorphism. Hint: Show first that image $(T)=\mathbb{R}^{4}$.

Answer: Given a vector \vec{x} in \mathbb{R}^{4}, we have $T(U(\vec{x}))=\vec{x}$, by the previous part, and so \vec{x} is a value of T, and $\operatorname{im}(T)=\mathbb{R}^{4}$.
T is an isomorphism, if and only if $\operatorname{ker}(T)=0$ and $\operatorname{im}(T)=\mathbb{R}^{4}$ (which we have already established). The rank-nullity theorem states that $\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))=\operatorname{dim}\left(P_{3}\right)$. In our case, the equation becomes $\operatorname{dim}(\operatorname{ker}(T))+4=4$, so $\operatorname{ker}(T)=0$.
(c) Show that the set $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a basis of P_{3}. Use the previous parts to minimize your calculations.
Answer: We have seen that T is an isomorphism, and U is its inverse. Thus, U is an isomorphism as well. An isomorphism maps a basis to a basis. U takes the standard basis to $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. Hence, the latter set is a basis.
Note: Once we know that $\beta:=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a basis of P_{3}, then part 7a means that T is nothing but the linear transformation sending a polynomial f in P_{3} to its coordinate vector $[f]_{\beta}$.
(d) Find a polynomial $g(x)$ of degree ≤ 3 satisfying $g(1)=2, g(2)=3, g(3)=5$, $g(4)=7$. Hint: Express g as a linear combination of the f_{i} 's. You need not simplify your answer.

Answer: We are looking for a polynomial $g(x)$ satisfying $T(g)=\left(\begin{array}{l}2 \\ 3 \\ 5 \\ 7\end{array}\right)$. Take $g(x)=2 f_{1}(x)+3 f_{2}(x)+5 f_{3}(x)+7 f_{4}(x)$.

