
Math 235 Section 1 Solution of Final Exam Spring 2008

Justify all your answers. Show all your work!!!

1. (10 points) The matrices A and B below are row equivalent (you do not need to
check this fact).

A =









1 0 1 1 0 0
−2 1 0 0 −2 1
1 0 1 0 1 −1
0 1 2 2 −2 1









B =









1 0 1 0 1 −1
0 1 2 0 0 −1
0 0 0 1 −1 1
0 0 0 0 0 0









a) Find a basis for ker(A).

b) Find a basis for image(A).

The solution is similar to question 1 in midterm 2.

2. (16 points) Consider the matrix A =





−1 −2 −4
0 0 −1
0 2 3



.

(a) Show that the characteristic polynomial of A is −(λ− 1)(λ + 1)(λ− 2).

Answer: det(A−λI) = det





−1− λ −2 −4
0 −λ −1
0 2 3− λ



 . Now use the co-factor

(Laplace) expansion along the first column to get
det(A− λI) = −(λ + 1)[λ2 − 3λ + 2] = −(λ− 1)(λ + 1)(λ− 2).

(b) Find a basis of R
3 consisting of eigenvectors of A.

Answer: The eigenvalues are the roots of the characteristoc polynomial λ1 =
−1, λ2 = 1, λ3 = 2.

The 1-eigenspace: ker(A − 1I) = ker(A − I) = ker





−2 −2 −4
0 −1 −1
0 2 2



. Row

reducing, we get that the row reduced echelon form of A− I is





1 0 1
0 1 1
0 0 0



 .

We see that x3 is a free variable, x1 = −x3, x2 = −x3, and so the general

vector in ker(A− I) has the from





x1

x2

x3



 =





−x3

−x3

x3



 = x3





−1
−1
1



. The

1-eigenspace is thus spanned by v1 :=





−1
−1
1



.

The −1-eigenspace: ker(A − (−1)I) = ker(A + I) is shown similarly to be

spanned by v2 :=





1
0
0



.
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The 2-eigenspace: ker(A − 2I) is shown similarly to be spanned by v3 :=




−2
−1
2



.

(c) Find an invertible matrix S and a diagonal matrix D such that the matrix A
above satisfies S−1AS = D

Answer: A theorem we prove in class tells us that if we take the union of the
bases for all the eigenspaces, we get a linearly independent set. The set {v1, v2, v3}
is thus linearly independent, and since it consists of three vectors, it is a basis of
R

3.

The Diagonalization Theorem states that the matrix A is diagonalizable, if and
only if there exists a basis of R3 consisting of eigenvectors of A. Furthermore,
if {v1, v2, v3} is such a basis, and we let S = (v1v2v2) be the matrix, whose j-th
column is vj, then S−1AS is a diagonal matrix, whose (j, j) diagonal entry is the
eigen-value λj of vj.

We can thus take S =





−1 1 −2
−1 0 −1
1 0 2



 and D =





1 0 0
0 −1 0
0 0 2



.

3. (16 points) The vectors v1 =

(

1
1

)

and v2 =

(

1
−1

)

are eigenvectors of the

matrix A =

(

.7 .3

.3 .7

)

.

(a) The eigenvalue of v1 is 1 , since Av1 =

(

.7 .3

.3 .7

) (

1
1

)

=

(

1
1

)

= v1.

The eigenvalue of v2 is 0.4 , since Av2 = 0.4v2.

(b) Set w :=

(

1
2

)

. Find the coordinate vector [w]β of w in the basis β :=

{v1, v2}.

Answer: Row reduce (v1v2|w) =

(

1 1 1
1 −1 2

)

∼ · · · ∼
(

1 0 3/2
0 1 1/2

)

.

We see that w = (3/2)v1 − (1/2)v2.

(c) Compute A100

(

1
2

)

.

Answer: A100w = A100[(3/2)v1 − (1/2)v2] = 1100(3/2)v1 − (0.4)100(1/2)v2 =
(

(3/2)− (1/2)(.4)100

(3/2) + (1/2)(.4)100

)

.

(d) As n gets larger, the vector An

(

1
2

)

approaches (3/2)v1 . Justify your

answer.

Answer:Using the fact that limn→∞(.4)n = 0, we get

Anw = An[(3/2)v1 − (1/2)v2] = (3/2)v1 − (0.4)n(1/2)v2
n→∞−→ (3/2)v1 =

(

1.5
1.5

)

.
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4. (16 points) Let V be the plane in R
3 spanned by v1 :=





1
−1
1



 and v2 :=





1
2
1



.

(a) Find the orthogonal projection projV (w) of w =





7
1
3



 into V .

Answer: We check first that β := {v1, v2} is an orthogonal basis for V . The
set β spans V , by definition of V , and it consists of non-zero vectors, so it
suffices to check that the set is orthogonal. Indeed, v1 · v2 = 0. We can now
apply the formula for the projection

projV (w) = (w·v1)
(v1·v1)

v1 + (w·v2)
(v2·v2)

v2 = 3v1 + 2v2 =





5
1
5





(b) Write w as a sum of a vector in V and a vector orthogonal to V .

Answer: By definition of the projection to V , projV (w) is the vector in V ,
such that w − projV (w) is orthogonal to V , and in particular to projV (w).

Thus, w = projV (w)+ [w − projV (w)] =





5
1
5



+





2
0
−2



 is such a sum.

(c) Find the distance from w to V (i.e., to the vector in V closest to w).

Answer: The point in V closest to w is projV (w). Thus the distence from w
to V is ‖w − projV (w)‖ =

√

22 + 02 + (−2)2 =
√

8.

5. (16 points)

(a) Let A and S be two n × n matrices with real coefficients with S invertible.
Then the columns v1, . . . , vn of S form a basis of R

n. Complete the following
sentence: The matrix S−1AS is diagonal with di as its (i, i)-entry, if and only
if for all 1 ≤ i ≤ n, the vector vi is

an eigen-vector of A with eigen-value di. .

(b) For what values of θ is the matrix A =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

diagonalizable?

I.e., for what values of θ does there exist some invertible 2× 2 matrix S with
real coefficients, such that S−1AS is diagonal? Justify your answer!

Answer: Method A: The characteristic polynomial of A is

det

(

cos(θ)− λ − sin(θ)
sin(θ) cos(θ)− λ

)

= λ2 − 2 cos(θ)λ + 1. Its discriminat

4 cos2(θ)− 4 is negative, unless cos(θ) = ±1, i.e., θ = nπ, for some integer n.
If θ = nπ, then A = ±I is diagonal. Otherwise, the characteristic polynomial
does not have any real root, so A does not have any real eigenvalues, and is
thus not similar to a diagonal matrix with real entries (not diagonalizable).

Method B: We can also argue geometrically and arrive at the same conclusion.
I.e., A is diagonalizable, if and only if it is rotation by angle 0 (the identity)
or by andle π (so A = −I), since otherwise for every non-zero vector v in
R

2, v and Av do not lie on a line through the origin, so Av is not a scalar
multiple of v (so A does not have any eigen-vectors).
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(c) For what values of k is the matrix

(

2 0
k 2

)

diagonalizable? Justify your

answer!

Answer: The matrix is lower triangular, so its eigen-values are its diagonal entries.
In our case, the only eigen-value is 2. A is diagonalizable,
if and only if the 2-eigen-space is 2-dimensional,
if and only if ker(A− 2I) is 2-dimensional,

if and only if ker

(

0 0
k 0

)

is 2-dimensional,

if and only if rank

(

0 0
k 0

)

= 0,

if and only if k = 0.

6. (10 points)

Let V be the subspace of R
4 spanned by v1 =









1
1
1
−1









and v2 =









3
1
3
−1









.

(a) Use the Gram-Schmidt process to find an orthonormal basis for V .

Answer: Take u1 := 1
‖v1‖

v1, ũ2 := v2 − projv1
(v2), and u2 := 1

‖ũ2‖
ũ2. Then

{u1, u2} is an orthonormal basis for V . Calculating, we get:

u1 = 1
2









1
1
1
−1









, projv1
(v2) = (v1·v2)

(v1·v1)
v1 = 2v1 =









2
2
2
−2









,

ũ2 =









1
−1
1
1









, u2 = 1
2









1
−1
1
1









.

(b) Find a basis for the orthogonal complement V ⊥ of V in R4.

Answer: The orthogonal complement V ⊥ of V is the kernel of

(

1 1 1 −1
3 1 3 −1

)

.

Row reducing, we find that w1 :=









−1
0
1
0









and w2 :=









0
1
0
1









form a basis of V ⊥.

7. (16 points) Let P3 be the vector space of polynomials of degree ≤ 3 with real
coefficients. Let T : P3 → R

4 be the linear transformation given by

T (f) =









f(1)
f(2)
f(3)
f(4)









. Consider the following four polynomials in P3:

f1(x) = −1
6

(x− 2)(x− 3)(x− 4), f2(x) = 1
2
(x− 1)(x− 3)(x− 4),

f3(x) = −1
2

(x− 1)(x− 2)(x− 4), f4(x) = 1
6
(x− 1)(x− 2)(x− 3).
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Let U : R
4 → P3 be the linear transformation given by

U









c1

c2

c3

c4









= c1f1(x) + c2f2(x) + c3f3(x) + c4f4(x).

(a) Show that the composition TU : R
4 → R

4 is the identity linear transforma-
tion. In other words, show that T (U(~x)) = ~x, for all ~x in R

4.

Answer: A straightforward calculation shows that T (fi) = ei, where ei is
the i-th column of the 4× 4 identity matrix. For example

T (f1) =









f1(1)
f1(2)
f1(3)
f1(4)









=









1
0
0
0









. Thus, T









U









c1

c2

c3

c3

















=

T (c1f1+c2f2+c3f3+c4f4) = c1T (f1)+c2T (f2)+c3T (f3)+c4T (f4) =









c1

c2

c3

c4









.

(b) Show that T is an isomorphism. Hint: Show first that image(T ) = R
4.

Answer: Given a vector ~x in R
4, we have T (U(~x)) = ~x, by the previous part,

and so ~x is a value of T , and im(T ) = R
4.

T is an isomorphism, if and only if ker(T ) = 0 and im(T ) = R
4 (which we

have already established). The rank-nullity theorem states that
dim(ker(T )) + dim(im(T )) = dim(P3). In our case, the equation becomes
dim(ker(T )) + 4 = 4, so ker(T ) = 0.

(c) Show that the set {f1, f2, f3, f4} is a basis of P3. Use the previous parts to
minimize your calculations.

Answer: We have seen that T is an isomorphism, and U is its inverse. Thus,
U is an isomorphism as well. An isomorphism maps a basis to a basis. U
takes the standard basis to {f1, f2, f3, f4}. Hence, the latter set is a basis.

Note: Once we know that β := {f1, f2, f3, f4} is a basis of P3, then part 7a

means that T is nothing but the linear transformation sending a polynomial

f in P3 to its coordinate vector [f ]β.

(d) Find a polynomial g(x) of degree ≤ 3 satisfying g(1) = 2, g(2) = 3, g(3) = 5,
g(4) = 7. Hint: Express g as a linear combination of the fi’s. You need not
simplify your answer.

Answer: We are looking for a polynomial g(x) satisfying T (g) =









2
3
5
7









. Take

g(x) = 2f1(x) + 3f2(x) + 5f3(x) + 7f4(x).
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