Practice Problems

1. (8 points) Which of the following subsets $S \subseteq V$ are subspaces of V ? Write $Y E S$ if S is a subspace and $N O$ if S is not a subspace.
a. (2 pts) $\quad S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x \leq y \leq z\right\}$
b. (2 pts) $\quad S=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x+y+z=0\right\}$
c. (2 pts) $\quad S$ is the set of vectors of the form $\left(\begin{array}{c}a+2 b+3 c \\ c \\ 0\end{array}\right)$.
d. (2 pts) S is the set polynomials in \mathcal{P}_{3} such that $p^{\prime}(2)=0$.
2. (10 points) Solve the following system of linear equations.

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 1 & 4 \\
3 & 1 & 5
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

3. (10 points) Solve the following system of linear equations.

$$
\begin{aligned}
x-z & =1 \\
x+2 y+3 z & =11 .
\end{aligned}
$$

4. (7 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote rotation counterclockwise about the origin in \mathbb{R}^{2} by $\frac{\pi}{4}$ radians or 45°.
a. (3 pts) Compute the matrix that represents T.
b. (2 pts) Is T an isomorphism?
c. (2 pts) Is T diagonalizable?
5. (6 points) Let A be a $n \times n$ orthogonal matrix.
a. (2 pts) What is the rank of A ?
b. (2 pts) What are the possible values for $\operatorname{det}(A)$?
c. (2 pts) If λ is an eigenvalue for A, what are the possible values for λ ?
6. (13 points) Consider the linear transformation $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ given by $(T(f))(x)=f(2 x-1)$. Let \mathcal{B} be the ordered basis $\mathcal{B}=\left(1, x, x^{2}\right)$.
a. (3pts) Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(T)$.
b. (3 pts) Compute the eigenvalues of T.
c. (3 pts) Is T diagonalizable?
d. (4 pts) Compute the eigenspaces of T. Make sure your answers are expressed as subspaces of \mathcal{P}_{2}.
7. (12 points) Two interacting populations of foxes and hares can be modeled by the equations

$$
\begin{aligned}
& h(t+1)=4 h(t)-2 f(t) \\
& f(t+1)=h(t)+f(t) .
\end{aligned}
$$

a. (4 pts) Find a matrix A such that

$$
\binom{h(t+1)}{f(t+1)}=A\binom{h(t)}{f(t)} .
$$

b. (8 pts) Find a formula for $h(t)$ and $f(t)$.
8. (10 points) Let A be a 3×3 matrix such that

$$
A \vec{x}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

has $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ as solutions. Find another solution. Explain.
9. (12 points) Let $T: \mathbb{R}^{9 \times 10} \rightarrow \mathbb{R}^{9}$ be the map defined by

$$
T(A)=A \vec{e}_{1} .
$$

a. (4 pts) Show that T is a linear transformation.
b. (4 pts) What is the rank of T ?
c. (4 pts) State the Rank-Nullity Theorem and use it to compute the nullity of T.
10. (12 points)
a. (4 pts) Give the definition of the phrase V is a subspace of \mathbb{R}^{n}.
b. (8 pts) Let V be a subspace of \mathbb{R}^{n}. Prove that $V^{\perp}=\left\{\vec{u} \in \mathbb{R}^{n} \mid \vec{u} \cdot \vec{v}=0\right.$ for every $\left.\vec{v} i n V\right\}$ is a subspace of \mathbb{R}^{n}.

