Practice Problems

- **1.** (8 points) Which of the following subsets $S \subseteq V$ are subspaces of V? Write YES if S is a subspace and NO if S is not a subspace.
 - **a.** (2 pts) $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x \le y \le z \right\}$
 - **b.** (2 pts) $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x + y + z = 0 \right\}$
 - **c.** (2 pts) S is the set of vectors of the form $\begin{pmatrix} a+2b+3c \\ c \\ 0 \end{pmatrix}$.
 - **d.** (2 pts) S is the set polynomials in \mathcal{P}_3 such that p'(2) = 0.
- 2. (10 points) Solve the following system of linear equations.

$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 5 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.$$

3. (10 points) Solve the following system of linear equations.

$$x - z = 1$$
$$x + 2y + 3z = 11.$$

- **4.** (7 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ denote rotation counterclockwise about the origin in \mathbb{R}^2 by $\frac{\pi}{4}$ radians or 45° .
 - **a.** (3 pts) Compute the matrix that represents T.
 - **b.** (2 pts) Is T an isomorphism?
 - c. (2 pts) Is T diagonalizable?
- **5.** (6 points) Let A be a $n \times n$ orthogonal matrix.
 - **a.** (2 pts) What is the rank of A?
 - **b.** (2 pts) What are the possible values for det(A)?
 - **c.** (2 pts) If λ is an eigenvalue for A, what are the possible values for λ ?
- **6.** (13 points) Consider the linear transformation $T: \mathcal{P}_2 \to \mathcal{P}_2$ given by (T(f))(x) = f(2x-1). Let \mathcal{B} be the ordered basis $\mathcal{B} = (1, x, x^2)$.
 - **a.** (3 pts) Compute $Mat_{\mathcal{B}}^{\dot{\mathcal{B}}}(T)$.
 - **b.** (3 pts) Compute the eigenvalues of T.
 - c. (3 pts) Is T diagonalizable?
- **d.** (4 pts) Compute the eigenspaces of T. Make sure your answers are expressed as subspaces of \mathcal{P}_2 .

7. (12 points) Two interacting populations of foxes and hares can be modeled by the equations

$$h(t+1) = 4h(t) - 2f(t)$$

 $f(t+1) = h(t) + f(t)$.

a. (4 pts) Find a matrix A such that

$$\begin{pmatrix} h(t+1) \\ f(t+1) \end{pmatrix} = A \begin{pmatrix} h(t) \\ f(t) \end{pmatrix}.$$

b. (8 pts) Find a formula for h(t) and f(t).

8. (10 points) Let A be a 3×3 matrix such that

$$A\vec{x} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$

has $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$ as solutions. Find another solution. Explain.

9. (12 points) Let $T: \mathbb{R}^{9 \times 10} \to \mathbb{R}^9$ be the map defined by

$$T(A) = A\vec{e}_1.$$

a. (4 pts) Show that T is a linear transformation.

b. (4 pts) What is the rank of T?

c. (4 pts) State the Rank-Nullity Theorem and use it to compute the nullity of T.

10. (12 points)

a. (4 pts) Give the definition of the phrase V is a subspace of \mathbb{R}^n .

b. (8 pts) Let V be a subspace of \mathbb{R}^n . Prove that $V^{\perp} = \{\vec{u} \in \mathbb{R}^n \mid \vec{u} \cdot \vec{v} = 0 \text{ for every } \vec{v}inV\}$ is a subspace of \mathbb{R}^n .