Practice TEST 2

- **1.** (20 points) Let $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and let $\vec{v}_2 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$. Let V be the subspace spanned by \vec{v}_1 and \vec{v}_2 .
 - **a.** (5 pts) Prove that \vec{v}_1 is not perpendicular to \vec{v}_2 .
 - **b.** (8 pts) Find an orthonormal basis for V.
 - c. (7 pts) What is the matrix for orthogonal projection onto V?
- **2.** (17 points) Find the quadratic polynomial $p(t) = a + bt + ct^2$ that best (in the least squares sense) fits the following data.

t	-1	0	1	2
y	1	1.5	2	3

3. (28 points) Let $V \subseteq C^{\infty}$ be subspace spanned by $\{e^x, xe^x, x^2e^x\}$. Let \mathcal{B} be the ordered basis

$$\mathcal{B} = (e^x, xe^x, x^2e^x).$$

- **a.** (4 pts) What is the dimension of V?
- **b.** (8 pts) Let $D: V \to V$ be the linear transformation given by D(f) = f'. Express D as a matrix with respect to the basis \mathcal{B} . i.e. Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$.
 - **c.** (8 pts) Let $A = \operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$. You can check that

$$A^3 - 3A^2 + 3A - 1 = 0.$$

Consider the function $f(x) = 2e^x - 13xe^x + \sqrt{2}x^2e^x$. What does the above tell you about

$$f''' - 3f'' + 3f' - f?$$

d. (8 pts) Suppose you want to find functions u such that

$$u'''(x) - 3u''(x) + 3u'(x) - u(x) = x.$$

Verify that u(x) = -x - 3 is a solution. Find another one.

4. (15 points) Find a basis for the space perpendicular to the solutions of

$$x_1 + 3x_2 - x_3 + x_4 = 0$$

$$-2x_1 + 2x_2 + x_3 + x_4 = 0$$

5. (20 points) Let P_5 denote the vector space of polynomials of degree at most 5. Let $S \subseteq P_5$ denote the subset of polynomials p such that

$$p''(2) = p(4).$$

Show that S is a subspace of P_5 and compute a basis of S.

Before test 2:

- 1. Make sure you can define the following words:
 - (a) linear transformation
 - (b) subspace
 - (c) linearly independent
 - (d) rank
 - (e) kernel
 - (f) image
 - (g) span
 - (h) dimension
 - (i) similar matrices
 - (j) vector space
 - (k) transpose of a matrix
 - (l) orthogonal matrix
 - (m) symmetric matrix
 - (n) skew-symmetric matrix
 - (o) orthonormal basis
- 2. Make sure you can do Gaussian Elimination and Gram-Schmidt, and you know what each is good for.
- 3. Make sure you can solve a linear system.
- 4. Make sure you can state the Rank-Nullity Theorem and fully appreciate all of its consequences.