Practice TEST 2

1. (20 points) Let $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and let $\vec{v}_{2}\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$. Let V be the subspace spanned by \vec{v}_{1} and \vec{v}_{2}.
a. (5 pts) Prove that \vec{v}_{1} is not perpendicular to \vec{v}_{2}.
b. (8 pts) Find an orthonormal basis for V.
c. (7 pts) What is the matrix for orthogonal projection onto V ?
2. (17 points) Find the quadratic polynomial $p(t)=a+b t+c t^{2}$ that best (in the least squares sense) fits the following data.

t	-1	0	1	2
y	1	1.5	2	3

3. (28 points) Let $V \subseteq C^{\infty}$ be subspace spanned by $\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$. Let \mathcal{B} be the ordered basis

$$
\mathcal{B}=\left(e^{x}, x e^{x}, x^{2} e^{x}\right) .
$$

a. (4 pts) What is the dimension of V ?
b. (8 pts) Let $D: V \rightarrow V$ be the linear transformation given by $D(f)=f^{\prime}$. Express D as a matrix with respect to the basis \mathcal{B}. i.e. Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$.
c. $(8$ pts $) \quad$ Let $A=\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$. You can check that

$$
A^{3}-3 A^{2}+3 A-1=0 .
$$

Consider the function $f(x)=2 e^{x}-13 x e^{x}+\sqrt{2} x^{2} e^{x}$. What does the above tell you about

$$
f^{\prime \prime \prime}-3 f^{\prime \prime}+3 f^{\prime}-f ?
$$

d. (8 pts) Suppose you want to find functions u such that

$$
u^{\prime \prime \prime}(x)-3 u^{\prime \prime}(x)+3 u^{\prime}(x)-u(x)=x .
$$

Verify that $u(x)=-x-3$ is a solution. Find another one.
4. (15 points) Find a basis for the space perpendicular to the solutions of

$$
\begin{aligned}
x_{1}+3 x_{2}-x_{3}+x_{4} & =0 \\
-2 x_{1}+2 x_{2}+x_{3}+x_{4} & =0
\end{aligned}
$$

5. (20 points) Let P_{5} denote the vector space of polynomials of degree at most 5 . Let $S \subseteq P_{5}$ denote the subset of polynomials p such that

$$
p^{\prime \prime}(2)=p(4) .
$$

Show that S is a subspace of P_{5} and compute a basis of S.

1. Make sure you can define the following words:
(a) linear transformation
(b) subspace
(c) linearly independent
(d) rank
(e) kernel
(f) image
(g) span
(h) dimension
(i) similar matrices
(j) vector space
(k) transpose of a matrix
(l) orthogonal matrix
(m) symmetric matrix
(n) skew-symmetric matrix
(o) orthonormal basis
2. Make sure you can do Gaussian Elimination and Gram-Schmidt, and you know what each is good for.
3. Make sure you can solve a linear system.
4. Make sure you can state the Rank-Nullity Theorem and fully appreciate all of its consequences.
