Practice TEST 2: hints

1. (20 points) Let $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and let $\vec{v}_{2}\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$. Let V be the subspace spanned by \vec{v}_{1} and \vec{v}_{2}.
a. (5 pts) Prove that \vec{v}_{1} is not perpendicular to \vec{v}_{2}.

Compute the dot product $\vec{v}_{1} \cdot \vec{v}_{2}$.
b. (8 pts) Find an orthonormal basis for V.

Use Gram-Schmidt on $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ to find orthonormal basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.
c. (7 pts) What is the matrix for orthogonal projection onto V ?

Compute $Q Q^{t}$, where $Q=\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$.
2. (17 points) Find the quadratic polynomial $p(t)=a+b t+c t^{2}$ that best (in the least squares sense) fits the following data.

t	-1	0	1	2
y	1	1.5	2	3

If we were able to find a quadratic polynomial that went through all four points, then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ would be a solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right] \quad \text { and } \quad \vec{b}=\left(\begin{array}{c}
1 \\
1.5 \\
2 \\
3
\end{array}\right)
$$

(Why?) This has no solution, but we can find the least squares solution by solving the normal equation for this linear system,

$$
A^{t} A \vec{x}=A^{t} \vec{b} .
$$

The last step is to translate the solution back to a polynomial.
3. (28 points) Let $V \subseteq C^{\infty}$ be subspace spanned by $\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$. Let \mathcal{B} be the ordered basis

$$
\mathcal{B}=\left(e^{x}, x e^{x}, x^{2} e^{x}\right)
$$

a. (4 pts) What is the dimension of V ?

The dimension is the number of elements in a basis.
b. (8 pts) Let $D: V \rightarrow V$ be the linear transformation given by $D(f)=f^{\prime}$. Express D as a matrix with respect to the basis \mathcal{B}. i.e. Compute $\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$.
$\operatorname{Mat}_{\mathcal{B}}^{\mathcal{B}}(D)$ is given by $\left[\begin{array}{ccc}\mid & \mid & \mid \\ \left.D\left(e^{x}\right)\right]_{\mathcal{B}} & {\left[D\left(x e^{x}\right)\right]_{\mathcal{B}}} & {\left[D\left(x^{2} e^{x}\right)\right]_{\mathcal{B}}} \\ \mid & \mid & \mid\end{array}\right]$. Compute this 3×3 matrix.
c. $(8$ pts $) \quad$ Let $A=\operatorname{Mat} \mathcal{B}_{\mathcal{B}}^{\mathcal{B}}(D)$. You can check that

$$
A^{3}-3 A^{2}+3 A-1=0
$$

Consider the function $f(x)=2 e^{x}-13 x e^{x}+\sqrt{2} x^{2} e^{x}$. What does the above tell you about

$$
f^{\prime \prime \prime}-3 f^{\prime \prime}+3 f^{\prime}-f ?
$$

The above tells us that the linear transformation $T=D^{3}-3 D^{2}+3 D-1$ is the zero transformation on V. Hence $T(g)=0$ for every $g \in V$. In particular, since $f \in V$,

$$
T(f)=f^{\prime \prime \prime}-3 f^{\prime \prime}+3 f^{\prime}-f=0
$$

d. (8 pts) Suppose you want to find functions u such that

$$
u^{\prime \prime \prime}(x)-3 u^{\prime \prime}(x)+3 u^{\prime}(x)-u(x)=x .
$$

Verify that $u_{0}(x)=-x-3$ is a solution. Find another one.
To verify u_{0} is a solution, plug in and check.
Let h be the function $h(x)=x$. View T as a linear transformation $T: C^{\infty} \rightarrow C^{\infty}$. You are trying to find solutions to

$$
T(u)=h .
$$

You are given that $T\left(u_{0}\right)=h$. Notice that every other solution has the form $u_{0}+\phi$, where $\phi \in \operatorname{ker}(T)$. (Why?) Do you know any non-zero things in $\operatorname{ker}(T)$?
4. (15 points) Find a basis for the space perpendicular to the solutions of

$$
\begin{aligned}
x_{1}+3 x_{2}-x_{3}+x_{4} & =0 \\
-2 x_{1}+2 x_{2}+x_{3}+x_{4} & =0
\end{aligned}
$$

The solutions to those equations are exactly the kernel of $A=\left[\begin{array}{cccc}1 & 3 & -1 & 1 \\ -2 & 2 & 1 & 1\end{array}\right]$. Do you know another way to characterize $(\operatorname{ker}(A))^{\perp}$?
5. (20 points) Let P_{5} denote the vector space of polynomials of degree at most 5 . Let $S \subseteq P_{5}$ denote the subset of polynomials p such that

$$
p^{\prime \prime}(2)=p(4) .
$$

Show that S is a subspace of P_{5} and compute a basis of S.
To show that S is a subspace, verify the 3 conditions required to be a subspace.
A general element of P_{5} can be written as $a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}$. What conditions are there on (a, b, c, d, e, f) so that the associated polynomial is in S ? Set it up as a linear system and solve. Translate back to polynomials to get a basis for S.

