1. Write the system of equations as a matrix equation and find all solutions using Gauss elimination:

$$
x+2 y+4 z=0,-x+3 y+z=-5,2 x+y+5 z=3 .
$$

We see that this is a linear system with 3 equations in 3 unknowns. The matrix equation is $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
-1 & 3 & 1 \\
2 & 1 & 5
\end{array}\right] \quad \text { and } \quad \vec{b}=\left(\begin{array}{c}
0 \\
-5 \\
3
\end{array}\right)
$$

To solve this system, we form the augmented matrix $\left[\begin{array}{ccccc}1 & 2 & 4 & : & 0 \\ -1 & 3 & 1 & : & -5 \\ 2 & 1 & 5 & : & 3\end{array}\right]$ and perform Gaussian elimination to get the coefficient matrix in reduced echelon form.

$$
\begin{array}{cc}
{\left[\begin{array}{ccccc}
1 & 2 & 4 & \vdots & 0 \\
-1 & 3 & 1 & \vdots & -5 \\
2 & 1 & 5 & \vdots & 3
\end{array}\right]} & \rightarrow\left[\begin{array}{ccccc}
1 & 2 & 4 & \vdots & 0 \\
0 & 5 & 5 & \vdots & -5 \\
0 & -3 & -3 & \vdots & 3
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{ccccc}
1 & 2 & 3 & \vdots & 0 \\
0 & 1 & 1 & \vdots & -1 \\
0 & -3 & -3 & \vdots & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & 2 \\
0 & 1 & 1 & \vdots & -1 \\
0 & 0 & 0 & \vdots & 0
\end{array}\right] .}
\end{array}
$$

Since there is no pivot in the third column, the third unknown is free and the solutions are $x=2-2 t, y=-1-t, z=t$ or equivalently $\vec{x}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+t\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)$, where t is free.
2. What does it mean for a vector to be in the kernel of a matrix A. Let A be the matrix $\left[\begin{array}{ccc}1 & 2 & 5 \\ -2 & 0 & -2 \\ 3 & -1 & 1\end{array}\right]$. Is $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ an element of the kernel of A ? Why?
A vector \vec{v} is in the kernel of A if $A \vec{v}=\overrightarrow{0}$. To see that $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) \in \operatorname{ker}(A)$, we compute

$$
\left[\begin{array}{ccc}
1 & 2 & 5 \\
-2 & 0 & -2 \\
3 & -1 & 1
\end{array}\right]\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1+4-5 \\
-2+0+2 \\
3-2-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

3. Define what it means for a set s to be a basis of a subspace $V \subset \mathbb{R}^{n}$. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-1 & 0 & 1 & -1 \\
-1 & 4 & 3 & -5
\end{array}\right]
$$

Give a set of vectors that span $\operatorname{ker}(A)$ and that are independent.
A set of vectors s is a basis of V is $V=\operatorname{span}(s)$ and s is linearly independent. To find a basis for $\operatorname{ker}(A)$, we use Gaussian elimination to compute the reduced echelon form of A.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-1 & 0 & 1 & -1 \\
-1 & 4 & 3 & -5
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 3 & -1 \\
0 & 2 & 4 & -2 \\
0 & 6 & 6 & -6
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 3 & -1 \\
0 & 1 & 2 & -1 \\
0 & 6 & 6 & -6
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & -6 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

We see that the $4^{\text {th }}$ column has no pivot, and so x_{4} is free. Then $\operatorname{ker}(A)$ is $x_{1}=$ $-t, x_{2}=t, x_{3}=0, x_{4}=t$ or equivalently $\vec{x}=t\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right)$. Therefore a basis for $\operatorname{ker}(A)$ is $\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right)\right\}$.
4. Let A be a n by m matrix, so A gives a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}. Let $\vec{x}_{1}, \vec{x}_{2} \in \mathbb{R}^{m}$. Assume that $A\left(\vec{x}_{1}\right)=A\left(\vec{x}_{2}\right)$. Show that $\vec{x}_{1}-\vec{x}_{2}$ is in the kernel of A.
We compute

$$
A\left(\vec{x}_{1}-\vec{x}_{2}\right)=A \vec{x}_{1}-A \vec{x}_{2}=\overrightarrow{0} .
$$

5. Let $\vec{u}=\binom{u_{1}}{u_{2}}$ be a vector of length 1 . Let A be a matrix whose effect on the plane is to reflect about the line through the origin and \vec{u}. Let $\vec{v}=\binom{-u_{2}}{u_{1}}$. In terms of \vec{u} and \vec{v} what is $A \vec{u}$? what is $A \vec{v}$? Write $\vec{e}_{1}=\binom{1}{0}$ as a linear combination of \vec{u} and \vec{v}. Use the answer to the previous question to compute $A \vec{e}_{1}$.
Notice that \vec{v} is perpendicular to \vec{u} (Check by computing dot product), and hence perpendicular to the line through the origin and \vec{u}. Since A is reflection about this line, it follows that $A \vec{v}=-v$. Since \vec{u} is on the line, $A \vec{u}=\vec{u}$. We can use Gaussian
elimination on $\left[\begin{array}{cccc}u_{1} & -u_{1} & \vdots & 1 \\ u_{2} & u_{1} & \vdots & 0\end{array}\right]$ to express \vec{e}_{1} as a linear combination of \vec{u} and \vec{v}.
Alternatively, notice that $u_{1} \vec{u}-u_{2} \vec{v}=\binom{u_{1}^{2}+u_{2}^{2}}{u_{1} u_{2}-u_{1} u_{2}}=\binom{1}{0}$, since \vec{u} has length 1 .
Now compute

$$
\begin{aligned}
A \vec{e}_{1} & =A\left(u_{1} \vec{u}-u_{2} \vec{v}\right) \\
& =u_{1} \vec{u}+u_{2} \vec{v} \\
& =\binom{u_{1}^{2}-u_{2}^{2}}{2 u_{1} u_{2}} .
\end{aligned}
$$

6. Solve the equation

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
2 & 1 & -1
\end{array}\right] x=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) .
$$

for $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ by find the inverse of the given matrix.
7. Compute the product $A B$ of the two matrices A, B given below, if possible. If it is not possible say why it is not possible.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & -2
\end{array}\right] \\
B=\left[\begin{array}{cc}
-1 & 0 \\
4 & 8
\end{array}\right]
\end{gathered}
$$

The product matrix $A B$ gives a function. What is the domain and what is the range of that function?
Since B gives a transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and A gives a transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, only the composition $A B$ makes sense and give a map from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. We compute the product

$$
A B=\left[\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & -2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
4 & 8
\end{array}\right]=\left[\begin{array}{cc}
7 & 16 \\
1 & 0 \\
-11 & -16
\end{array}\right]
$$

8. Find a basis of the subspace of \mathbb{R}^{3} defined by $3 x-y+z=0$. What is the dimension of this subspace?
This subspace is the kernel of $A=\left[\begin{array}{lll}3 & -1 & 1\end{array}\right]$. Since $\operatorname{rank}(A)=1$, the Rank-Nullity Theorem implies that the dimension of $\operatorname{ker}(A)=3-1=2$. By inspection, $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$
and $\vec{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ are in $\operatorname{ker}(A)$ and linearly independent. Hence $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is a basis.
Alternatively, we find a basis for $\operatorname{ker}(A)$ by using Gaussian elimination.

$$
\left[\begin{array}{lllll}
3 & -1 & 1 & \vdots & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & -1 / 3 & 1 / 3 & \vdots & 0
\end{array}\right]
$$

We see that the second and third columns do not contain pivots, and so the asssociated unknown is free, so we get that the kernel is $\{x=s / 3-t / 3, y=s, z=t\}$ or equivalently $\vec{x}=s\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)+t\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$, where s and t are free. It follows that a basis is $\left\{\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)\right\}$.
9. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 2 & 0 \\
1 & 1 & 3 \\
-2 & 1 & -3
\end{array}\right]
$$

Let $\vec{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right)$. Find equations in $b_{1}, b_{2}, b_{3}, b_{4}$ so that the equation $A \vec{x}=\vec{b}$ can be solved. Find a basis of the image of A.
We use Gaussian elimination to find the equations in $b_{1}, b_{2}, b_{3}, b_{4}$ so that the equation $A \vec{x}=\vec{b}$ can be solved. Note that this is exactly the same as asking for the equations in $b_{1}, b_{2}, b_{3}, b_{4}$ so that \vec{b} is in the image of A and exactly the same as asking for the equations in $b_{1}, b_{2}, b_{3}, b_{4}$ so that the linear system $A \vec{x}=\vec{b}$ is consistent.

$$
\begin{array}{ccccccc}
{\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & b_{1} \\
-1 & 2 & 0 & \vdots & b_{2} \\
1 & 1 & 3 & \vdots & b_{3} \\
-2 & 1 & -3 & \vdots & b_{4}
\end{array}\right]} & \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & b_{1} \\
0 & 2 & 2 & \vdots & b_{2}+b_{1} \\
0 & 1 & 1 & \vdots & b_{3}-b_{1} \\
0 & 1 & 1 & \vdots & b_{4}+2 b_{1}
\end{array}\right] & \rightarrow \\
& {\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & b_{1} \\
0 & 1 & 1 & \vdots & \left(b_{2}+b_{1}\right) / 2 \\
0 & 1 & 1 & \vdots & b_{3}-b_{1} \\
0 & 1 & 1 & \vdots & b_{4}+2 b_{1}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & \vdots & b_{1} \\
0 & 1 & 1 & \vdots & \left(b_{2}+b_{1}\right) / 2 \\
0 & 0 & 0 & \vdots & b_{3}-b_{1}-\left(b_{2}+b_{1}\right) / 2 \\
0 & 0 & 0 & \vdots & b_{4}+2 b_{1}-\left(b_{2}+b_{1}\right) / 2
\end{array}\right]}
\end{array}
$$

It follows that we need $b_{3}-b_{1}-\left(b_{2}+b_{1}\right) / 2=0$ and $b_{4}+2 b_{1}-\left(b_{2}+b_{1}\right) / 2=0$ for the system to be consistent. Simplifying the equations yield

$$
\left\{2 b_{3}-3 b_{1}-b_{2}=0,2 b_{4}+3 b_{1}-b_{2}=0\right\} .
$$

The equations in the b_{i} define the image of A, so we can use this to construct a basis. Alternatively, we have computed $\operatorname{rref}(A)$. We see that the first 2 columns are pivot columns. This implies that the first two columns of A will form a basis for $\operatorname{im}(A)$, and so $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1 \\ 1\end{array}\right)\right\}$ is a basis for $\operatorname{im}(A)$.
10. Let V, W be subspaces of \mathbb{R}^{n}. Assume that $V \subset W$ and that the dimension of V is equal to the dimension of W. Show $V=W$.

We will prove this by contradiction. Suppose that $V \neq W$. Then there is a vector $\vec{v} \in W$ such that $\vec{v} \notin V$. Let S be a basis for V. Since $\vec{v} \notin V=\operatorname{span}(S)$, the set $\tilde{S}=S \cup\{\vec{v}\}$ is linearly independent. This is impossible because

$$
\# \tilde{S}=\# S+1=\operatorname{dim}(V)+1=\operatorname{dim}(W)+1
$$

Therefore $V=W$.
11. Let T be a linear transformation from \mathbb{R}^{5} to \mathbb{R}. What are the possible values for the dimension of the kernel of T ?

The Rank-Nullity Theorem says that

$$
\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}\left(\mathbb{R}^{5}\right)=5
$$

Since the range is 1 -dimensional, $\operatorname{dim}(\operatorname{im}(T))=0$ or 1 . The dimension of the domain is 5 , so the Rank-Nullity Theorem implies that the dimension of the kernel is either 5 or 4 corresponding to these two cases. (Note: The dimension of the kernel is 5 only for the zero transformation.)

