Practice Problems Math 235 Spring 2007

1. Write the system of equations as a matrix equation and find all solutions using Gauss elimination:

$$
x+2 y+4 z=0,-x+3 y+z=-5,2 x+y+5 z=3
$$

2. What does it mean for a vector to be in the kernal of a matrix A. Let A be the matrix $\left(\begin{array}{ccc}1 & 2 & 5 \\ -2 & 0 & -2 \\ 3 & -1 & 1\end{array}\right)$. Is $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ an element of the kernal of A ? Why?
3. Define what it means for a set s to be a basis of a subspace $V \subset \mathbb{R}^{n}$. Let

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-1 & 0 & 1 & -1 \\
-1 & 4 & 3 & -5
\end{array}\right)
$$

Give a set of vectors that span $\operatorname{ker}(A)$ and that are independent.
4. Let A be a n by m matrix, so A gives a function from \mathbb{R}^{m} to \mathbb{R}^{n}. Let $x_{1}, x_{2} \in \mathbb{R}^{m}$. Assume that $A\left(x_{1}\right)=A\left(x_{2}\right)$. Show that $x_{1}-x_{2}$ is in the kernal of A.
5. Let $u=\left(u_{1}, u_{2}\right)$ be a vector of length 1 . Let A be a matrix whose effect on the plane is to reflect about the line through the origin and u. Let $v=\left(-u_{2}, u_{1}\right)$. In terms of u and v what is $A(u)$? what is $A(v)$? Write $e_{1}=\binom{1}{0}$ as a linear combination of u and v. Use the answer to the previous question to compute $A\left(e_{1}\right)$.
6. Solve the equation

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
2 & 1 & -1
\end{array}\right) x=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

for $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ by find the inverse of the given matrix.
7. Compute the product $A B$ of the two matrices A, B given below, if possible. If it is not possible say why it is not possible.

$$
\begin{gathered}
A=\left(\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & -2
\end{array}\right) \\
B=\left(\begin{array}{cc}
-1 & 0 \\
4 & 8
\end{array}\right)
\end{gathered}
$$

The product matrix $A B$ gives a funtion. What is the domain and what is the range of that function?
8. Find a basis of the subspace of \mathbb{R}^{3} defined by $3 x-y+z=0$. What is the dimension of this subspace?
9. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
-1 & 2 & 0 \\
1 & 1 & 3 \\
-2 & 1 & -3
\end{array}\right)
$$

. Let $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right)$. Find conditions on b so that the equation $A x=b$ can be solved. Find a basis of the image of A.
10. Let V, W be subspaces of \mathbb{R}^{n}. Assume that $V \subset W$ and that the dimension of V is equal to the dimension of W. Show $V=W$.

