Name: \qquad
Justify all your answers. Show all your work!!!

1. (20 points) You are given below the matrix A together with its row reduced echelon form B

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 3 & 0 & 1 & 0 \\
0 & 2 & 4 & 2 & 2 & 2 \\
2 & 1 & 4 & -1 & 1 & 0 \\
1 & 1 & 3 & 0 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Note: you do not have to check that A and B are indeed row equivalent.
a) Determine the rank of $A, \operatorname{dim}(\operatorname{ker}(A))$, and $\operatorname{dim}(\operatorname{im}(A))$. Explain how these are determined by the matrix B.
b) Find a basis for the kernel $\operatorname{ker}(A)$ of A.
c) Find a basis for the image $\operatorname{im}(A)$ of A.
d) Does the vector $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ belong to the image of A ? Use part c to minimize your computations. Justify your answer!
2. (12 points) Let A be a 4×5 matrix with columns $\vec{a}_{1}, \ldots, \vec{a}_{5}$. We are given that the vector $\left(\begin{array}{l}3 \\ 2 \\ 1 \\ 4 \\ 5\end{array}\right)$ belongs to the kernel of A and the vectors $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ span the image of A.
a) Express \vec{a}_{5} as a linear combination of $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$.
b) Determine $\operatorname{dim}(\operatorname{im}(A))$. Justify your answer.
c) Determine $\operatorname{dim}(\operatorname{ker}(A))$. Justify your answer.
3. (20 points) Let $v_{1}=\binom{1}{1}, v_{2}=\binom{0}{1}$, and $\beta:=\left\{v_{1}, v_{2}\right\}$ the corresponding basis of \mathbb{R}^{2}.
(a) Find a vector w in \mathbb{R}^{2}, such that the coordinate vector of w with respect to the basis β is $[w]_{\beta}=\binom{2}{3}$.
(b) Let $w_{1}:=\binom{2}{2}$ and $w_{2}:=\binom{-3}{-4}$. Find the coordinate vectors $\left[w_{1}\right]_{\beta}$ and $\left[w_{2}\right]_{\beta}$ with respect to the basis β.
(c) Let $A=\left(\begin{array}{ll}5 & -3 \\ 6 & -4\end{array}\right)$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the linear transformation given by $T(\vec{x})=A \vec{x}$. Note that $w_{1}=T\left(v_{1}\right)$ and $w_{2}=T\left(v_{2}\right)$. Use this information and your work in part 3 b to find the matrix B of T with respect to the basis β of \mathbb{R}^{2}.
(d) Let $\tilde{v}_{1}, \tilde{v}_{2}$, be two linearly independent vectors in \mathbb{R}^{2}, and $\widetilde{S}:=\left(\tilde{v}_{1} \tilde{v}_{2}\right)$ the 2×2 matrix with \tilde{v}_{j} as its j-th column. Let \widetilde{B} be the matrix of the linear transformation T in part 3c, with respect to the new basis $\tilde{\beta}:=\left\{\tilde{v}_{1}, \tilde{v}_{2}\right\}$. Express \widetilde{B} in terms of the matrices A and \widetilde{S}.
(e) Let $S:=\left(v_{1} v_{2}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Express \widetilde{B} in terms of the matrices S, \widetilde{S}, and B. Your final answer should not involve the matrix A. Hint: Express first A in terms of S and B. Then express A in terms of \widetilde{S} and \widetilde{B}.
4. (18 points) Denote the vector space of 2×2 matrices by $R^{2 \times 2}$. Let $A:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ the linear transformation given by $T(M)=A M-M A$.
(a) Find the matrix B of T in the basis

$$
\beta:=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \text { of } R^{2 \times 2} .
$$

(b) Find a basis for $\operatorname{ker}(B)$.
(c) Find a basis for $\operatorname{ker}(T)$.
(d) Find a basis for $\operatorname{im}(B)$.
(e) Find a basis for $\operatorname{im}(T)$.
5. (10 points) Let V and W be two vector spaces and $T: V \rightarrow W$ a linear transformation from V to W. Let p be a positive integer and $\left\{f_{1}, \ldots, f_{p}\right\}$ a linearly dependent subset of V consisting of p elements. Show the the subset $\left\{T\left(f_{1}\right), \ldots, T\left(f_{p}\right)\right\}$ of W is linearly dependent as well. Note: Provide an argument that works for general vector spaces, starting with the definition of linear dependence.
6. (20 points) Let $C^{\infty}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R}, having derivatives of all orders. Denote by V the subspace of $C^{\infty}(\mathbb{R})$ spanned by the functions $f_{1}(x)=e^{x}, f_{2}(x)=e^{2 x}$, and $f_{3}(x)=e^{3 x}$. Let $T: V \rightarrow \mathbb{R}^{3}$ be the transformation given by $T(f):=\left(\begin{array}{c}f(0) \\ f^{\prime}(0) \\ f^{\prime \prime}(0)\end{array}\right)$.
(a) Show that the transformation T is linear. In other words, verify the following identities, for any two elements f, g of V, and for every scalar k.
i. $T(f+g)=T(f)+T(g)$.
ii. $T(k f)=k T(f)$.
(b) Show that the subset $\left\{T\left(f_{1}\right), T\left(f_{2}\right), T\left(f_{3}\right)\right\}$ of \mathbb{R}^{3} is linearly independent. Hint: Recall that the chain rule yields $\left(e^{2 x}\right)^{\prime}=2 e^{2 x},\left(e^{2 x}\right)^{\prime \prime}=2^{2} e^{2 x}$, and so $f_{2}^{\prime \prime}(0)=4$.
(c) Show that $\operatorname{im}(T)$ is the whole of \mathbb{R}^{3}.
(d) Show the the subset $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ of V is linearly independent. Hint: Use part 6b and question 5 .
(e) Show that $T: V \rightarrow \mathbb{R}^{3}$ is an isomorphism.

