Name:____

Justify all your answers. Show all your work!!!

1. (20 points) You are given below the matrix A together with its row reduced echelon form ${\cal B}$

$$A = \begin{pmatrix} 1 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 4 & 2 & 2 & 2 \\ 2 & 1 & 4 & -1 & 1 & 0 \\ 1 & 1 & 3 & 0 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Note: you do **not** have to check that A and B are indeed row equivalent.

a) Determine the rank of A, $\dim(\ker(A))$, and $\dim(\operatorname{im}(A))$. Explain how these are determined by the matrix B.

b) Find a basis for the kernel $\ker(A)$ of A.

c) Find a basis for the image im(A) of A.

d) Does the vector $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ belong to the image of A? Use part c to minimize your computations. **Justify** your answer!

2. (12 points) Let A be a 4×5 matrix with columns $\vec{a}_1, \ldots, \vec{a}_5$. We are given that

the vector
$$\begin{pmatrix} 3\\2\\1\\4\\5 \end{pmatrix}$$
 belongs to the kernel of A and the vectors $\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$

span the image of A.

a) Express \vec{a}_5 as a linear combination of $\vec{a}_1, \, \vec{a}_2, \, \vec{a}_3, \, \vec{a}_4.$

b) Determine $\dim(\operatorname{im}(A))$. Justify your answer.

c) Determine $\dim(\ker(A))$. Justify your answer.

- 3. (20 points) Let $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\beta := \{v_1, v_2\}$ the corresponding basis of \mathbb{R}^2 .
 - (a) Find a vector w in \mathbb{R}^2 , such that the coordinate vector of w with respect to the basis β is $[w]_{\beta} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

(b) Let $w_1 := \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $w_2 := \begin{pmatrix} -3 \\ -4 \end{pmatrix}$. Find the coordinate vectors $[w_1]_{\beta}$ and $[w_2]_{\beta}$ with respect to the basis β .

(c) Let $A = \begin{pmatrix} 5 & -3 \\ 6 & -4 \end{pmatrix}$ and $T : \mathbb{R}^2 \to \mathbb{R}^2$ the linear transformation given by $T(\vec{x}) = A\vec{x}$. Note that $w_1 = T(v_1)$ and $w_2 = T(v_2)$. Use this information and your work in part 3b to find the matrix B of T with respect to the basis β of \mathbb{R}^2 .

(d) Let \tilde{v}_1 , \tilde{v}_2 , be two linearly independent vectors in \mathbb{R}^2 , and $\tilde{S} := (\tilde{v}_1 \tilde{v}_2)$ the 2×2 matrix with \tilde{v}_j as its j-th column. Let \tilde{B} be the matrix of the linear transformation T in part 3c, with respect to the new basis $\tilde{\beta} := \{\tilde{v}_1, \tilde{v}_2\}$. Express \tilde{B} in terms of the matrices A and \tilde{S} .

(e) Let $S := (v_1v_2) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Express \widetilde{B} in terms of the matrices S, \widetilde{S} , and B. Your final answer should not involve the matrix A. Hint: Express first A in terms of S and B. Then express A in terms of \widetilde{S} and \widetilde{B} .

- 4. (18 points) Denote the vector space of 2×2 matrices by $R^{2 \times 2}$. Let $A := \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ the linear transformation given by T(M) = AM MA.
 - $(a) \ \ \text{Find the matrix } B \ \text{of } T \ \text{in the basis} \\ \beta := \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \ \text{of } R^{2\times 2}.$

(b) Find a basis for ker(B).

(c) Find a basis for ker(T).

(d) Find a basis for im(B).

(e) Find a basis for im(T).

5. (10 points) Let V and W be two vector spaces and $T: V \to W$ a linear transformation from V to W. Let p be a positive integer and $\{f_1, \ldots, f_p\}$ a linearly **dependent** subset of V consisting of p elements. Show the the subset $\{T(f_1), \ldots, T(f_p)\}$ of W is linearly dependent as well. Note: Provide an argument that works for general vector spaces, starting with the definition of linear dependence.

- 6. (20 points) Let $C^{\infty}(\mathbb{R})$ be the vector space of functions from \mathbb{R} to \mathbb{R} , having derivatives of all orders. Denote by V the subspace of $C^{\infty}(\mathbb{R})$ spanned by the functions $f_1(x) = e^x$, $f_2(x) = e^{2x}$, and $f_3(x) = e^{3x}$. Let $T: V \to \mathbb{R}^3$ be the transformation given by $T(f) := \begin{pmatrix} f(0) \\ f'(0) \\ f''(0) \end{pmatrix}$.
 - (a) Show that the transformation T is linear. In other words, verify the following identities, for any two elements f, g of V, and for every scalar k.

i.
$$T(f+g) = T(f) + T(g)$$
.

ii.
$$T(kf) = kT(f)$$
.

(b) Show that the subset $\{T(f_1), T(f_2), T(f_3)\}$ of \mathbb{R}^3 is linearly independent. Hint: Recall that the chain rule yields $(e^{2x})' = 2e^{2x}$, $(e^{2x})'' = 2^2e^{2x}$, and so $f_2''(0) = 4$.

(c) Show that im(T) is the whole of \mathbb{R}^3 .

(d) Show the the subset $\{e^x,e^{2x},e^{3x}\}$ of V is linearly independent. Hint: Use part 6b and question 5.

(e) Show that $T:V\to\mathbb{R}^3$ is an isomorphism.