Math 235 Section 1 Final Exam Spring 2008

Justify all your answers. Show all your work!!!

1. (10 points) The matrices A and B below are row equivalent (you do not need to check this fact).

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & -2 & 1 \\
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 2 & -2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for $\operatorname{ker}(A)$.
b) Find a basis for image (A).
2. (16 points) Consider the matrix $A=\left(\begin{array}{ccc}-1 & -2 & -4 \\ 0 & 0 & -1 \\ 0 & 2 & 3\end{array}\right)$.
(a) Show that the characteristic polynomial of A is $-(\lambda-1)(\lambda+1)(\lambda-2)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find an invertible matrix S and a diagonal matrix D such that the matrix A above satisfies $S^{-1} A S=D$
3. (16 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$ are eigenvectors of the $\operatorname{matrix} A=\left(\begin{array}{ll}.7 & .3 \\ .3 & .7\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad
The eigenvalue of v_{2} is \qquad
(b) Set $w:=\binom{1}{2}$. Find the coordinate vector $[w]_{\beta}$ of w in the basis $\beta:=$ $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{100}\binom{1}{2}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{2}$ approaches \qquad . Justify your answer.
4. (16 points) Let V be the plane in \mathbb{R}^{3} spanned by $v_{1}:=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $v_{2}:=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
(a) Find the orthogonal projection $\operatorname{proj}_{V}(w)$ of $w=\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)$ into V.
(b) Write w as a sum of a vector in V and a vector orthogonal to V.
(c) Find the distance from w to V (i.e., to the vector in V closest to w).
5. (16 points)
(a) Let A and S be two $n \times n$ matrices with real coefficients with S invertible. Then the columns v_{1}, \ldots, v_{n} of S form a basis of \mathbb{R}^{n}. Complete the following sentence: The matrix $S^{-1} A S$ is diagonal with d_{i} as its (i, i)-entry, if and only if for all $1 \leq i \leq n$, the vector v_{i} is
(b) For what values of θ is the matrix $A=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ diagonalizable? I.e., for what values of θ does there exist some invertible 2×2 matrix S with real coefficients, such that $S^{-1} A S$ is diagonal? Justify your answer!
(c) For what values of k is the matrix $\left(\begin{array}{ll}2 & 0 \\ k & 2\end{array}\right)$ diagonalizable? Justify your answer!
6. (10 points) Let V be the subspace of \mathbb{R}^{4} spanned by
$v_{1}=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}3 \\ 1 \\ 3 \\ -1\end{array}\right)$.
(a) Use the Gram-Schmidt process to find an orthonormal basis for V.
(b) Find a basis for the orthogonal complement V^{\perp} of V in R^{4}.
7. (16 points) Let P_{3} be the vector space of polynomials of degree ≤ 3 with real coefficients. Let $T: P_{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation given by
$T(f)=\left(\begin{array}{c}f(1) \\ f(2) \\ f(3) \\ f(4)\end{array}\right)$. Consider the following four polynomials in P_{3} :
$f_{1}(x)=\frac{-1}{6}(x-2)(x-3)(x-4), \quad f_{2}(x)=\frac{1}{2}(x-1)(x-3)(x-4)$,
$f_{3}(x)=\frac{-1}{2}(x-1)(x-2)(x-4), \quad f_{4}(x)=\frac{1}{6}(x-1)(x-2)(x-3)$.
Let $U: \mathbb{R}^{4} \rightarrow P_{3}$ be the linear transformation given by
$U\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)=c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)+c_{4} f_{4}(x)$.
(a) Show that the composition $T U: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is the identity linear transformation. In other words, show that $T(U(\vec{x}))=\vec{x}$, for all \vec{x} in \mathbb{R}^{4}.
(b) Show that T is an isomorphism. Hint: Show first that image $(T)=\mathbb{R}^{4}$.
(c) Show that the set $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ is a basis of P_{3}. Use the previous parts to minimize your calculations.
(d) Find a polynomial $g(x)$ of degree ≤ 3 satisfying $g(1)=2, g(2)=3, g(3)=5$, $g(4)=7$. Hint: Express g as a linear combination of the f_{i} 's. You need not simplify your answer.

