Math 235 Section 1

Final Exam

Spring 2008

Justify all your answers. Show all your work!!!

1. (10 points) The matrices A and B below are row equivalent (you do **not** need to check this fact).

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Find a basis for ker(A).
- b) Find a basis for image(A).
- 2. (16 points) Consider the matrix $A = \begin{pmatrix} -1 & -2 & -4 \\ 0 & 0 & -1 \\ 0 & 2 & 3 \end{pmatrix}$.
 - (a) Show that the characteristic polynomial of A is $-(\lambda 1)(\lambda + 1)(\lambda 2)$.
 - (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find an invertible matrix S and a diagonal matrix D such that the matrix A above satisfies $S^{-1}AS = D$
- 3. (16 points) The vectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .7 & .3 \\ .3 & .7 \end{pmatrix}$.
 - (a) The eigenvalue of v_1 is _____ The eigenvalue of v_2 is _____
 - (b) Set $w := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find the coordinate vector $[w]_{\beta}$ of w in the basis $\beta := \{v_1, v_2\}$.
 - (c) Compute $A^{100} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
 - (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ approaches _____. Justify your answer.
- 4. (16 points) Let V be the plane in \mathbb{R}^3 spanned by $v_1 := \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $v_2 := \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.
 - (a) Find the orthogonal projection $\operatorname{proj}_V(w)$ of $w=\begin{pmatrix} 7\\1\\3 \end{pmatrix}$ into V.
 - (b) Write w as a sum of a vector in V and a vector orthogonal to V.
 - (c) Find the distance from w to V (i.e., to the vector in V closest to w).

- 5. (16 points)
 - (a) Let A and S be two $n \times n$ matrices with real coefficients with S invertible. Then the columns v_1, \ldots, v_n of S form a basis of \mathbb{R}^n . Complete the following sentence: The matrix $S^{-1}AS$ is diagonal with d_i as its (i, i)-entry, if and only if for all $1 \le i \le n$, the vector v_i is
 - (b) For what values of θ is the matrix $A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ diagonalizable? I.e., for what values of θ does there exist some invertible 2×2 matrix S with real coefficients, such that $S^{-1}AS$ is diagonal? Justify your answer!
 - (c) For what values of k is the matrix $\begin{pmatrix} 2 & 0 \\ k & 2 \end{pmatrix}$ diagonalizable? Justify your answer!
- 6. (10 points) Let V be the subspace of \mathbb{R}^4 spanned by

$$v_1 = \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} 3\\1\\3\\-1 \end{pmatrix}$.

- (a) Use the Gram-Schmidt process to find an orthonormal basis for V.
- (b) Find a basis for the orthogonal complement V^{\perp} of V in \mathbb{R}^4 .
- 7. (16 points) Let P_3 be the vector space of polynomials of degree ≤ 3 with real coefficients. Let $T: P_3 \to \mathbb{R}^4$ be the linear transformation given by

$$T(f) = \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \end{pmatrix}$$
. Consider the following four polynomials in P_3 :

$$\int_{1}^{1} f(4) \int_{1}^{1} f_{1}(x) = \frac{-1}{6}(x-2)(x-3)(x-4), \quad f_{2}(x) = \frac{1}{2}(x-1)(x-3)(x-4),
f_{3}(x) = \frac{-1}{2}(x-1)(x-2)(x-4), \quad f_{4}(x) = \frac{1}{6}(x-1)(x-2)(x-3).
\text{Let } U : \mathbb{R}^{4} \to P_{3} \text{ be the linear transformation given by}$$

$$U\begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) + c_4 f_4(x).$$

- (a) Show that the composition $TU: \mathbb{R}^4 \to \mathbb{R}^4$ is the identity linear transformation. In other words, show that $T(U(\vec{x})) = \vec{x}$, for all \vec{x} in \mathbb{R}^4 .
- (b) Show that T is an isomorphism. Hint: Show first that image(T) = \mathbb{R}^4 .
- (c) Show that the set $\{f_1, f_2, f_3, f_4\}$ is a basis of P_3 . Use the previous parts to minimize your calculations.
- (d) Find a polynomial g(x) of degree ≤ 3 satisfying g(1) = 2, g(2) = 3, g(3) = 5, g(4) = 7. Hint: Express g as a linear combination of the f_i 's. You need not simplify your answer.