1. (10 points) For each statement, indicate whether the statement is true or false. FOR THIS PROBLEM BUT ONLY FOR THIS PROBLEM, no explanations are needed.
(a) A linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{n} is invertible if and only if $\operatorname{ker}(T)=$ $\{0\}$.
(b) If $n \geq 2$ and A is an $n \times n$ matrix obtained by switching two rows of the identity matrix, then $\operatorname{det} A=-1$. of \mathbb{R}^{n}, then v is in V.
(c) If A, B are $n \times n$ matrices and \vec{v} is an eigenvector of A as well as an eigenvector of B, then \vec{v} is an eigenvector of $7 A-3 B$.
(d) If λ is an eigenvalue of a matrix A, then λ^{7} is an eigenvalue of A^{7}.
(e) If $T: V \rightarrow W$ is a linear transformation, then $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{Image}(T)=$ $\operatorname{dim} V$.
(f) If A is an n by n matrix with $\operatorname{det} A=0$, then one of the columns of A must be a scalar multiple of another column of A.
2. (0 points) (a) Using Gaussian elimination, find all solutions of the system $A \vec{x}=0$ where A is the matrix

$$
\left(\begin{array}{cccc}
2 & 2 & -1 & 12 \\
-4 & 2 & 1 & -7 \\
0 & 0 & 1 & 4 \\
0 & 0 & -7 & -11
\end{array}\right)
$$

(b) Compute $\operatorname{det} A$. Use any method you wish, but show your work. The method "I used my calculator" will receive no points.
(c) Is 0 an eigenvalue for this matrix? Explain why or why not.
3. (0 points) Compute the characteristic equation and eigenvalues of the matrix $\left(\begin{array}{ccc}-3 & 0 & 4 \\ 0 & -1 & 0 \\ -2 & 7 & 3\end{array}\right)$
4. (0 points) Compute the projection of the vector $\vec{x}=\left(\begin{array}{l}6 \\ 5 \\ 4 \\ 3\end{array}\right)$ onto the subpsace $V \subset \mathbb{R}^{4}$ spanned by $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)$.
5. (0 points) Suppose U, V, W are vector spaces and $S: V \rightarrow V, T: V \rightarrow V$ are linear transformations so that the composite map $T \circ S$ is a linear transformation from V to V. Show that if S is not an isomorphism, then neither is $T \circ S$.
6. (0 points)
(a) Verify that if $\vec{v}_{1}=\left(\begin{array}{l}2 \\ 3 \\ 0 \\ 6\end{array}\right)$ and $\vec{v}_{2}=\left(\begin{array}{c}4 \\ 4 \\ 2 \\ 13\end{array}\right)$, then \vec{v}_{1} is not perpendicular to \vec{v}_{2}.
(b) Use the Gram-Schmidt process to find an orthonormal basis for the subspace V of \mathbb{R}^{4} spanned by \vec{v}_{1}, \vec{v}_{2}.
7. (0 points)
(a) For an n by n martrix A, define what it means for a non-zero vector $\vec{v} \in \mathbb{R}^{n}$ to be an eigenvector of A and what it means for a scalar $\lambda \in \mathbb{R}$ to be an eigenvalue of A.
(b) Compute the eigenvalues of the matrix $A=\left(\begin{array}{cc}-55 & 36 \\ -90 & 59\end{array}\right)$.
(c) For each eigenvalue of A, compute a corresponding eigenvector.
(d) Find an invertible matrix S and a diagonal matrix D such that $S^{-1} A S=D$. Describe how you arrive at S and at D. If you know what D should be but have trouble finding S, you will get some partial credit.
8. (0 points) Let V be the vector space of functions spanned by $\cos (2 x)$ and $\sin (2 x)$. Consider the map $T: V \rightarrow V$ defined by $T(f(x))=f^{\prime \prime}(x)-f^{\prime}(x)$ where $f^{\prime}(x)$ is the derivative of f with respect to x.
(a) Using the basis $\mathcal{A}=\cos (2 x), \sin (2 x)$ for V, compute the matrix A which represents the linear transformation T under \mathcal{A}.
(b) Compute the determinant of A.
(c) Is T invertible? Why or why not?

