1. (4 points) Let A be a 5×11 matrix (5 rows and 11 columns). Denote the rank of A by r.
(a) The rank of A must be in the range \qquad $\leq r \leq$ \qquad .
(b) Express the dimension of the null space of A in terms of r. $\operatorname{dim} \operatorname{Null}(A)=$ \qquad _.
(c) Express the dimension of the column space of A in terms of r.
$\operatorname{dim} \operatorname{Col}(A)=$ \qquad .
(d) Express the dimension of the row space of A in terms of r.
$\operatorname{dim} \operatorname{Row}(A)=$ \qquad .
2. (6 points) Let W be the plane in \mathbb{R}^{3} spanned by $u_{1}=\left(\begin{array}{c}2 \\ -1 \\ -4\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$
(a) Find the projection of $b=\left(\begin{array}{l}4 \\ 1 \\ 0\end{array}\right)$ to W.
(b) Find the distance from b to W.
3. (18 points) The matrices A and B below are row equivalent (you do not need to check this fact).

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 2 & 7 & 8 \\
2 & 1 & 3 & 3 & 0 & 0 \\
3 & 2 & 4 & 5 & 1 & 4 \\
0 & 0 & 0 & 0 & 3 & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a) What is the rank of A ?
b) Find a basis for the null space $\operatorname{Null}(A)$ of A.
c) Find a basis for the column space of A.
d) Find a basis for the row space of A.
4. (18 points) Let W be the line in \mathbb{R}^{3} spanned by $w=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
(a) Find the length of $v=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$.
(b) Find the projection of v to the line W.
(c) Find the distance between v and the line W.
(d) Denote by W^{\perp} the plane (through $\overrightarrow{0}$), which is orthogonal to w. Write v as a sum of a vector in W and a vector in W^{\perp}.
(e) Find the distance from v to W^{\perp}.
(f) Find an orthogonal basis $\left\{u_{1}, u_{2}\right\}$ for W^{\perp}. Hint: Let u_{1} be the vector in W^{\perp} you found in part 4d. Now find u_{2} orthogonal to both w and u_{1}.
5. (18 points)
(a) Show that the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 1 & 1\end{array}\right)$ is $-(\lambda-1)(\lambda+1)(\lambda-2)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$
P^{-1} A P=D
$$

6. (18 points) The vectors $v_{1}=\binom{1}{-1}$ and $v_{2}=\binom{3 / 7}{4 / 7}$ are eigenvectors of the matrix $A=\left(\begin{array}{ll}.6 & .3 \\ .4 & .7\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad
The eigenvalue of v_{2} is \qquad
(b) Find the coordinates of $\binom{1}{1}$ in the basis $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{100}\binom{1}{1}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{1}$ approaches \qquad . Justify your answer.
7. (18 points)
(a) Find the matrix A of the rotation of \mathbb{R}^{2} an angle of $\frac{\pi}{2}$ radians $\left(90^{\circ}\right)$ counter-clockwise.
(b) Find the matrix B of the reflection of the plane about the line $x_{1}=0$ (the x_{2} coordinate line).
(c) Compute $C=A^{-1} B A$. Is C the matrix of a rotation? (if yes, find the angle). Is C the matrix of a reflection? (if yes, find the line of reflection).
8. (18 points) Let B be the matrix $\left[\begin{array}{ccc}4 & -7 & 4 \\ -1 & 4 & 8 \\ -8 & -4 & 1\end{array}\right]$ and $A=\frac{1}{9} B$.
(a) Show that the columns $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$ of A form an orthonormal basis of \mathbb{R}^{3}.
(b) Use part 8 a to find the coordinates of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ in the basis $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}$.
(c) A is the matrix of a rotation of \mathbb{R}^{3} about a line L through the origin (you may assume this fact). Explain why any non-zero vector v in L must be an eigenvector of A and determine its eigenvalue.
(d) Find a vector v which spans the axis of rotation of A (the line L in part 8c). Hint: You may avoid calculations with fractions by working with the matrix B. Use the fact that a vector v is an eigenvector of A with eigenvalue λ, if and only if v is an eigenvector of B with eigenvalue 9λ.
