Math 235 Midterm $2 \quad$ Spring 2001

1. (24 points) You are given below the matrix A together with its row reduced echelon form B

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 3 & 0 & 1 & 0 \\
0 & 2 & 4 & 2 & 2 & 2 \\
2 & 1 & 4 & -1 & 1 & 0 \\
1 & 1 & 3 & 0 & 1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Note: you do not have to check that A and B are indeed row equivalent.
a) Find a basis for the null space $\operatorname{Null}(A)$ of A.
b) Find a basis for the column space of A.
c) Is the vector $\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ in the column space of A ? Use part b to Justify your answer!
2. (16 points) Let $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$.

Compute i) A^{-1}, ii) B^{-1}, and iii) $(A B)^{-1}$. Check your answers in parts i and ii by calculating $A A^{-1}$ and $B B^{-1}$.
3. (16 points) a) Let A, B and C be 4×4 matrices satisfying

$$
B=A C A^{-1}+2 A
$$

with A invertible. Solve for C in terms of A and B.
b) Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right]$ and $C=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1\end{array}\right]$. Find a matrix B satisfying $A B=C$.
c) Check your answer in part b by calculating $A B$.
4. (18 points) Determine which of the following sets in \mathbb{R}^{n} is a subspace. If it is not, find a property in the definition of a subspace which this set violates. If it is a subspace, find a matrix A such that this set is either $\operatorname{Null}(A)$ or $\operatorname{Col}(A)$.
(a) $\left\{\left[\begin{array}{c}x_{1}+3 x_{3} \\ 3 x_{2}-2 x_{3} \\ 2 x_{3}-x_{1} \\ 5 x_{1}+3 x_{2}-x_{3}\end{array}\right]: x_{1}, x_{2}, x_{3}\right.$ are arbitrary real numbers $\}$
(b) $\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]: x_{1}, x_{2}, x_{3}, x_{4} \quad\right.$ are real numbers satisfying $\left.\begin{array}{ccc}x_{1}+x_{2}+x_{3} & = & x_{4} \\ 5 x_{2} & = & 4 x_{3}\end{array}\right\}$
(c) The unique plane in \mathbb{R}^{3} passing through the three points

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \text { and }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

5. (16 points) a) Compute the area of the triangle in \mathbb{R}^{2} with vertices $(0,0),(1,2),(3,1)$. Hint: Find a parallelogram whose area is twice that of the triangle.
b) Compute the volume of the parallelepiped in \mathbb{R}^{3} with vertices
$\overrightarrow{0}, v_{1}, v_{2}, v_{3}, v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3}, v_{1}+v_{2}+v_{3}$, where

$$
v_{1}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)
$$

c) Use your answer in part (b) and the algebraic properties of determinants to compute the volume of the parallelepiped obtained if v_{1}, v_{2}, v_{3} are replaced by w_{1}, w_{2}, w_{3}, where $w_{i}=2 v_{i}$, for $i=1,2,3$.
6. (10 points) Let \mathbb{P}_{2} be the vector space of polynomials of degree ≤ 2. Recall that a vector in \mathbb{P}_{2} is a polynomial $p(t)$ of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$, where the coefficients a_{0}, a_{1}, a_{2} are arbitrary real numbers.
(a) Find a polynomial $p(t)$, of degree at most 2, satisfying $p(0)=4, p(1)=1$, and $p(2)=0$.
(b) The subset H of \mathbb{P}_{2}, of polynomials $p(t)$ of degree ≤ 2, which in addition satisfy

$$
p(2)=0
$$

is a subspace of \mathbb{P}_{2}. (You may assume this fact). Find a basis for H. Explain why the set you found is linearly independent and why it spans H.

