Math 235 Midterm 2 Fall 2015

1. (20 points) You are given below the matrix A together with its row reduced echelon form B (you need not verify that B is indeed the reduced echelon form of A)

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Find a basis for the null space Null(A) of A. Justify!
- b) Find a basis for the column space Col(A) of A. Justify!
- c) Is the sixth column $a_6 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ of the matrix A in part 1a) a linear combi-

nation of the first five columns of A? Justify your answer. Hint: A careful reading of Question 1 will eliminate the need for any computations.

(a) (10 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x_1, x_2) = (3x_1 - 4x_2, -5x_1 + 7x_2).$$

Show that T is invertible and find a formula for T^{-1} .

- (b) (10 points) Let \mathbb{P}_2 be the vector space of polynomials of degree ≤ 2 . Recall that a vector in \mathbb{P}_2 is a polynomial p(x) of the form $p(x) = a_0 + a_1 x + a_2 x^2$, where the coefficients a_0, a_1, a_2 are arbitrary real numbers. Is the subset $\{f,g,h\}$ of \mathbb{P}_2 , consisting of the three polynomials $f(x)=1-x, g(x)=1-x^2$, and $h(x) = 1 + x + x^2$, linearly dependent or independent? Justify your answer.
- 3. a) (8 points) Let A, B, and C be invertible $n \times n$ matrices. Show that there exists precisely one $n \times n$ matrix X satisfying C(A+X)B=A. Express X in terms of A, B, and C.
 - b) (12 points) Let $A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$. Compute its inverse A^{-1} . (Check that $AA^{-1} = I.$
- 4. (20 points) Determine if the following subset H of \mathbb{R}^n is a subspace. If it is not, find a property in the definition of a subspace which H violates. If H is a subspace find either a set of vectors which spans it, or a matrix A such that H is Null(A)(which will provide the justification that it is indeed a subspace).

 - (a) $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix}$ such that $xy \ge 0 \right\}$ (the union of the first and third quadrants). (b) $H = \left\{ \begin{bmatrix} 4x_1 + x_3 \\ 2x_1 3x_2 \\ x_2 + 6x_3 \end{bmatrix}$ such that x_1, x_2, x_3 are arbitrary real numbers $\right\}$

5. (20 points) a) Compute the volume of the parallelepiped in \mathbb{R}^3 with vertices $\vec{0}$, v_1 , v_2 , v_3 , $v_1 + v_2$, $v_1 + v_3$, $v_2 + v_3$, $v_1 + v_2 + v_3$ (the parallelepiped determined by v_1 , v_2 , and v_3) where

$$v_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $v_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

b) Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 sending a vector \vec{x} to $A\vec{x}$, where A is the matrix $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. Suppose v_1, v_2 are two vectors in \mathbb{R}^2 , such that the parallelogram with vertices $0, v_1, v_2, v_1 + v_2$ has area 8 square meters. Compute the area of the image of this parallelogram under the transformation T. (The image is the parallelogram with vertices $0, A(v_1), A(v_2), \text{ and } A(v_1 + v_2)$). Justify your answer!