Math 235 Midterm $2 \quad$ Fall 2015

1. (20 points) You are given below the matrix A together with its row reduced echelon form B (you need not verify that B is indeed the reduced echelon form of A)
$A=\left(\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1\end{array}\right) \quad B=\left(\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) Find a basis for the null space $\operatorname{Null}(A)$ of A. Justify!
b) Find a basis for the column space $\operatorname{Col}(A)$ of A. Justify!
c) Is the sixth column $a_{6}=\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right)$ of the matrix A in part 1a) a linear combination of the first five columns of A ? Justify your answer. Hint: A careful reading of Question 1 will eliminate the need for any computations.
2. (a) (10 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-4 x_{2},-5 x_{1}+7 x_{2}\right)
$$

Show that T is invertible and find a formula for T^{-1}.
(b) (10 points) Let \mathbb{P}_{2} be the vector space of polynomials of degree ≤ 2. Recall that a vector in \mathbb{P}_{2} is a polynomial $p(x)$ of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, where the coefficients a_{0}, a_{1}, a_{2} are arbitrary real numbers. Is the subset $\{f, g, h\}$ of \mathbb{P}_{2}, consisting of the three polynomials $f(x)=1-x, g(x)=1-x^{2}$, and $h(x)=1+x+x^{2}$, linearly dependent or independent? Justify your answer.
3. a) (8 points) Let A, B, and C be invertible $n \times n$ matrices. Show that there exists precisely one $n \times n$ matrix X satisfying $C(A+X) B=A$. Express X in terms of A, B, and C.
b) (12 points) Let $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$. Compute its inverse A^{-1}. (Check that $\left.A A^{-1}=I.\right)$
4. (20 points) Determine if the following subset H of \mathbb{R}^{n} is a subspace. If it is not, find a property in the definition of a subspace which H violates. If H is a subspace find either a set of vectors which spans it, or a matrix A such that H is $\operatorname{Null}(A)$ (which will provide the justification that it is indeed a subspace).
(a) $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ such that $\left.x y \geq 0\right\}$ (the union of the first and third quadrants).
(b) $H=\left\{\left[\begin{array}{c}4 x_{1}+x_{3} \\ 2 x_{1}-3 x_{2} \\ x_{2}+6 x_{3}\end{array}\right]\right.$ such that x_{1}, x_{2}, x_{3} are arbitrary real numbers $\}$
5. (20 points) a) Compute the volume of the parallelepiped in \mathbb{R}^{3} with vertices $\overrightarrow{0}, v_{1}, v_{2}, v_{3}, v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3}, v_{1}+v_{2}+v_{3}$ (the parallelepiped determined by v_{1}, v_{2}, and v_{3}) where

$$
v_{1}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

b) Let T be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} sending a vector \vec{x} to $A \vec{x}$, where A is the matrix $\left[\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right]$. Suppose v_{1}, v_{2} are two vectors in \mathbb{R}^{2}, such that the parallelogram with vertices $0, v_{1}, v_{2}, v_{1}+v_{2}$ has area 8 square meters. Compute the area of the image of this parallelogram under the transformation T. (The image is the parallelogram with vertices $0, A\left(v_{1}\right), A\left(v_{2}\right)$, and $A\left(v_{1}+v_{2}\right)$). Justify your answer!

