Math 235 Midterm 1 Solution \quad Spring 2005

1. (20 points) a) Find the row reduced echelon augmented matrix of the system $x_{1}+x_{2}+x_{3}+x_{4}=4$
$x_{2}-x_{3}+2 x_{4}+x_{5}=3$
$x_{1}+2 x_{2}+5 x_{4}+x_{5}=9$
Answer: The row reduction takes 5 elementary operations:
$\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 4 \\ 0 & 1 & -1 & 2 & 1 & 3 \\ 1 & 2 & 0 & 5 & 1 & 9\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 4 \\ 0 & 1 & -1 & 2 & 1 & 3 \\ 0 & 1 & -1 & 4 & 1 & 5\end{array}\right] \sim\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]$
$\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 4 \\ 0 & 1 & -1 & 2 & 1 & 3 \\ 0 & 1 & -1 & 2 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 3 \\ 0 & 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right] \sim\left[\begin{array}{cccccc}1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right] \sim$
b) Find the general solution for the system.

Answer: x_{3} and x_{5} are free variables.
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-2 x_{3}+x_{5}+2 \\ x_{3}-x_{5}+1 \\ x_{3} \\ 1 \\ x_{5}\end{array}\right]=x_{3} \cdot\left[\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5} \cdot\left[\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$
2. (18 points) Let $u_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], u_{2}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}3 \\ 2 \\ h\end{array}\right]$, and $u_{4}=\left[\begin{array}{c}h \\ 1 \\ 1\end{array}\right]$.

Justify your answers to the following questions!
a) For which real numbers h does the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ span the whole of \mathbb{R}^{3} ?

Answer: Let A be the matrix, whose columns are the vectors u_{i}. The question is equivalent to:
"For which value of h does the matrix A have a pivot in every row?"
Row reduction yields that A is row equivalent to the following matrix in echelon form:

$$
\left[\begin{array}{cccc}
1 & 2 & 2 & 1 \tag{1}\\
0 & -3 & -1 & h-2 \\
0 & 0 & h-3 & 1-h
\end{array}\right]
$$

If $h \neq 3$, then we get a pivot in the $(3,3)$ position (third row and third column). If $h=3$, then we get a pivot in the $(3,4)$ position. Thus, for every value of h, we get a pivot in every row. Consequently, the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ span the whole of \mathbb{R}^{3}, for every value of h.
b) For which values of h does the vector u_{3} belong to the plane spanned by $\left\{u_{1}, u_{2}\right\}$

Answer: Precisely when $h=3$, for the following reason. The question is equivalent to:
"For which value of h is the vector equation $x_{1} \vec{u}_{1}+x_{2} \vec{u}_{2}=\vec{u}_{3}$ consistent?"
The coefficient matrix of this equation has columns u_{1} and u_{2}, and the augmented matrix of this equation is the 3×3 matrix B, whose columns are u_{1}, u_{2}, and u_{3}. The row echelon matrix of B is obtained by considering the first three columns of the matrix (1) above. We get a pivot in the rightmost column (and the system is inconsistent) if and only if $h \neq 3$. Thus, the system is consistent if and only if $h=3$.
c) For which values of h does the vector u_{4} belong to the plane spanned by $\left\{u_{1}, u_{2}\right\}$?

Answer: Precisely when $h=1$, for a reason similar to part b (consider the first, second, and fourth columns of the matrix (1) above).
d) For which real numbers h is the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ linearly independent?

Answer: This set is always linearly dependent! Four vectors in \mathbb{R}^{3} are always linearly dependent (there are more vectors than entries in each vector.)
3. (13 points) Set up a system of linear equations for finding the electrical branch currents I_{1}, \ldots, I_{6} in the following circuit using i) the junction rule: the sum of currents entering a junction is equal to the sum of currents leaving the junction. ii) Ohm's rule: The drop in the voltage ΔV across a resistance R is related to the (directed) current I by the equation $\Delta V=I R$. iii) Kirchhof's circuit rule: the sum of the voltage drops due to resistances around any closed loop in the circuit equals the sum of the voltages induced by sources along the loop. Note: Do not solve the system.
4. (16 points) Determine if the statement is true or false. If it is true, give a reason. If it is false, provide a counter example. (credit will be given only if a valid justification is provided).
(a) If A is a 4×3 matrix (4 rows and 3 columns), \vec{b} is a vector in \mathbb{R}^{4}, and the equation $A \vec{x}=\vec{b}$ is consistent, then it has infinitely many solutions.
Answer: False. As a counter example consider the following equation, which has a unique solution:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

(b) Let A be a square 3×3 matrix. If the equation $A \vec{x}=\vec{b}$ is consistent, for all vectors \vec{b} in \mathbb{R}^{3}, then the columns of A are linearly independent.
Answer: True. Reason:

The equation $A \vec{x}=\vec{b}$ is consistent, for all vectors \vec{b} in $\mathbb{R}^{3} \Longrightarrow$
The augmented matrix $[A \mid \vec{b}]$ does not have a pivot in the rightmost column for all vectors \vec{b} in $\mathbb{R}^{3} \Longrightarrow$
A has a pivot in every row \Longrightarrow
A has a pivot in every column (A has the same number of rows and columns)
\Longrightarrow The columns of A are linearly independent
(c) Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3}. For every three vectors v_{1}, v_{2}, v_{3}, in \mathbb{R}^{2}, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is linearly dependent (in \mathbb{R}^{3}).
Answer: True. Reason:
The set of three vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$ in \mathbb{R}^{2} is linearly dependent (there are more vectors than entries in each vector). Hence, the vector equation
$x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=\overrightarrow{0}$
has a non trivial solution. Evaluating T on both sides, using the properties of linear transformations, we get that the same non-trivial solution solves also the equation

$$
x_{1} T\left(v_{1}\right)+x_{2} T\left(v_{2}\right)+x_{3} T\left(v_{3}\right)=\overrightarrow{0}
$$

(of vectors in \mathbb{R}^{3}). Hence, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is linearly dependent.
(d) Let A be a 3×4 matrix and b_{1}, b_{2} two vectors in \mathbb{R}^{3}. If the vector equations $A \vec{x}=b_{1}$ and $A \vec{x}=b_{2}$ are both consistent, then so is the equation $A \vec{x}=b_{1}-b_{2}$.

Answer: True. Reason:
If u is a solution of $A x=b_{1}$ and v is a solution of $A x=b_{2}$ then $u-v$ is a solution of $A x=b_{1}-b_{2}$, by the properties of matrix multiplication:
$A(u-v)=A u-A v=b_{1}-b_{2}$.
5. (15 points) a) Find two vectors v_{1}, v_{2} in \mathbb{R}^{3} which span the plane given by the equation

$$
x_{1}+3 x_{2}-x_{3}=0 .
$$

Answer: The plane is the set of solutions of this single linear equation. The variables x_{2} and x_{3} are free and the general solution is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 x_{2}+x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

This expression shows that the general solution is precisely the plane spanned by the two column vectors on the right hand side.
b) Let v_{1}, v_{2} be the two vectors from part a). Find the equation of the plane consisting of all vectors of the form $s v_{1}+t v_{2}+\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, where s, t are real numbers.

Answer: The above is a parametrization of the plane $x_{1}+3 x_{2}-x_{3}=b$, parallel to the one in part a), passing through the particular vector $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$. Plug $x_{1}=2$, $x_{2}=1, x_{3}=-1$ to get that $b=6$. So the equation of the plane is: $x_{1}+3 x_{2}-x_{3}=6$.
6. (18 points) Find the standard matrix of each of the following linear transformations.
a) T is the map from \mathbb{R}^{3} to \mathbb{R}^{3} defined by
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3}, 5 x_{1}+2 x_{2}+x_{3}, 9 x_{1}+7 x_{2}-5 x_{3}\right)$.
Answer: $\left[\begin{array}{ccc}2 & 1 & -1 \\ 5 & 2 & 1 \\ 9 & 7 & -5\end{array}\right]$.
b) T is the map from \mathbb{R}^{2} to \mathbb{R}^{2}, which rotates points (about the origin) through $3 \pi / 4$ radians (counterclockwise).
We determine the standard matrix $A=\left[\vec{a}_{1} \vec{a}_{2}\right]$ of T column by column:

$$
\begin{aligned}
& \vec{a}_{1}=T\binom{1}{0}=\binom{\cos (3 \pi / 4)}{\sin (3 \pi / 4)}=\binom{-1 / \sqrt{2}}{1 / \sqrt{2}} \\
& \vec{a}_{2}=T\binom{0}{1}=\binom{-\sin (3 \pi / 4)}{\cos (3 \pi / 4)}=\binom{-1 / \sqrt{2}}{-1 / \sqrt{2}}
\end{aligned}
$$

Thus, $A=\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ -1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]$
c) T is the map from \mathbb{R}^{2} to \mathbb{R}^{2}, which first reflects points through the vertical x_{2} axis and then reflects points through the line $x_{2}=x_{1}$.
Answer: Denote by R_{1} the reflection through the vertical x_{2} axis and by R_{2} the reflection through the line $x_{2}=x_{1}$. We determine the standard matrix $A=\left[\vec{a}_{1} \vec{a}_{2}\right]$ of T column by column:

$$
\begin{aligned}
& \vec{a}_{1}=T\binom{1}{0}=R_{2}\left(R_{1}\binom{1}{0}\right)=R_{2}\binom{-1}{0}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& \vec{a}_{2}=T\binom{0}{1}=R_{2}\left(R_{1}\binom{0}{1}\right)=R_{2}\binom{0}{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{aligned}
$$

Thus, $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.

