Math 235 Midterm $1 \quad$ Spring 2005

1. (20 points) a) Find the row reduced echelon augmented matrix of the system $x_{1}+x_{2}+x_{3}+x_{4}=4$
$x_{2}-x_{3}+2 x_{4}+x_{5}=3$
$x_{1}+2 x_{2}+5 x_{4}+x_{5}=9$
b) Find the general solution for the system.
2. (18 points) Let $u_{1}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], u_{2}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{l}3 \\ 2 \\ h\end{array}\right]$, and $u_{4}=\left[\begin{array}{c}h \\ 1 \\ 1\end{array}\right]$.

Justify your answers to the following questions!
a) For which real numbers h does the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ span the whole of \mathbb{R}^{3} ?
b) For which values of h does the vector u_{3} belong to the plane spanned by $\left\{u_{1}, u_{2}\right\}$
c) For which values of h does the vector u_{4} belong to the plane spanned by $\left\{u_{1}, u_{2}\right\}$?
d) For which real numbers h is the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ linearly independent?
3. (13 points) Set up a system of linear equations for finding the electrical branch currents I_{1}, \ldots, I_{6} in the following circuit using i) the junction rule: the sum of currents entering a junction is equal to the sum of currents leaving the junction. ii) Ohm's rule: The drop in the voltage ΔV across a resistance R is related to the (directed) current I by the equation $\Delta V=I R$. iii) Kirchhof's circuit rule: the sum of the voltage drops due to resistances around any closed loop in the circuit equals the sum of the voltages induced by sources along the loop.
Note: Do not solve the system.

Not covered in Fall 2015 semester

4. (16 points) Determine if the statement is true or false. If it is true, give a reason. If it is false, provide a counter example. (credit will be given only if a valid justification is provided).
(a) If A is a 4×3 matrix (4 rows and 3 columns), \vec{b} is a vector in \mathbb{R}^{4}, and the equation $A \vec{x}=\vec{b}$ is consistent, then it has infinitely many solutions.
(b) Let A be a square 3×3 matrix. If the equation $A \vec{x}=\vec{b}$ is consistent, for all vectors \vec{b} in \mathbb{R}^{3}, then the columns of A are linearly independent.
(c) Let T be a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{3}. For every three vectors v_{1}, v_{2}, v_{3}, in \mathbb{R}^{2}, the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is linearly dependent (in \mathbb{R}^{3}).
(d) Let A be a 3×4 matrix and b_{1}, b_{2} two vectors in \mathbb{R}^{3}. If the vector equations $A \vec{x}=b_{1}$ and $A \vec{x}=b_{2}$ are both consistent, then so is the equation $A \vec{x}=b_{1}-b_{2}$.
5. (15 points) a) Find two vectors v_{1}, v_{2} in \mathbb{R}^{3} which span the plane given by the equation

$$
x_{1}+3 x_{2}-x_{3}=0 .
$$

b) Let v_{1}, v_{2} be the two vectors from part a). Find the equation of the plane consisting of all vectors of the form $s v_{1}+t v_{2}+\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, where s, t are real numbers.
6. (18 points) Find the standard matrix of each of the following linear transformations.
a) T is the map from \mathbb{R}^{3} to \mathbb{R}^{3} defined by
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3}, 5 x_{1}+2 x_{2}+x_{3}, 9 x_{1}+7 x_{2}-5 x_{3}\right)$.
b) T is the map from \mathbb{R}^{2} to \mathbb{R}^{2}, which rotates points (about the origin) through $3 \pi / 4$ radians (counterclockwise).
c) T is the map from \mathbb{R}^{2} to \mathbb{R}^{2}, which first reflects points through the vertical x_{2} axis and then reflects points through the line $x_{2}=x_{1}$.

