Math 235 Final Exam Fall 2006

1. (15 points) The matrices A and B below are row equivalent (you do **not** need to check this fact).

$$A = \begin{pmatrix} 1 & -3 & 4 & -1 & 9 \\ 2 & -6 & 6 & 1 & 10 \\ 3 & -9 & 6 & 6 & 3 \\ 3 & -9 & 4 & 9 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -3 & 0 & 5 & 2 \\ 0 & 0 & 2 & -3 & 1 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Find a basis for the null space Null(A) of A.
- b) Find a basis for the column space of A.
- c) Find a basis for the row space of A.
- 2. (15 points)
 - (a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix} -5 & 3 & 6 \\ -6 & 4 & 6 \\ 0 & 0 & 1 \end{pmatrix}$ is $-(\lambda-1)^2(\lambda+2)$.
 - (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

- 3. (15 point) i) Let A be a 6×10 matrix (6 rows and 10 columns). Denote the dimension of the null space of A by k.
 - (a) Express the rank of A in terms of k. rank(A) =
 - (b) Express the dimension of the column space of A in terms of k. dim $(\operatorname{Col}(A)) = \underline{\hspace{1cm}}$.
 - ii) Let A be a 3×2 matrix and B a 2×3 matrix. Their product AB is thus a 3×3 matrix.
 - (a) Show that each column of AB is a linear combination of the columns of A. Conclude, that the column space Col(AB) is a subspace of Col(A).
 - (b) Show that Null(B) is a subspace of Null(AB).
 - (c) Use your work above to show that $rank(AB) \le min\{rank(A), rank(B)\}.$
 - (d) Can the product AB be invertible? Justify your answer!
- 4. (15 points) The vectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .7 & .3 \\ .3 & .7 \end{pmatrix}$.

(a) The eigenvalue of v_1 is _____

The eigenvalue of v_2 is _____

- (b) Find the coordinates of $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.
- (c) Compute $A^{100} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ approaches _____. Justify your answer.
- 5. (15 points) Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}$.
 - (a) Find the projection of $b = \begin{bmatrix} -1 \\ 11 \\ 3 \end{bmatrix}$ to the plane col(A) spanned by the columns of A.
 - (b) Find the distance from b to col(A).
 - (c) Find a least square solution of the equation Ax = b. I.e., find a vector x in \mathbb{R}^2 , for which the distance ||Ax b|| from Ax to b is minimal.
- 6. (15 points) Let $u_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix}$.
 - (a) Write v as a sum $v = \hat{v} + u_2$ of a vector \hat{v} parallel to u_1 and a vector u_2 orthogonal to u_1 .
 - (b) Find the distance from v to the line spanned by u_1 .
 - (c) Find an orthogonal basis for the plane W in \mathbb{R}^3 spanned by u_1 and v.
 - (d) Find a vector u_3 , such that the above two vectors u_1 , u_2 combine with u_3 to give an orthogonal basis $\{u_1, u_2, u_3\}$ of \mathbb{R}^3 .
- 7. (10 points)
 - (a) Find the inverse P^{-1} of the matrix $P = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.
 - (b) Denote the j-th column of P by p_j . Let A be the 3×3 matrix satisfying

$$Ap_1 = 2p_1, \quad Ap_2 = -p_2, \quad Ap_3 = p_3.$$

Calculate A. (Check that the A you found satisfies the three equations!). Hint: First find $P^{-1}AP$.