Math $235 \quad$ Final Exam Fall 2006

1. (15 points) The matrices A and B below are row equivalent (you do not need to check this fact).
$A=\left(\begin{array}{ccccc}1 & -3 & 4 & -1 & 9 \\ 2 & -6 & 6 & 1 & 10 \\ 3 & -9 & 6 & 6 & 3 \\ 3 & -9 & 4 & 9 & 0\end{array}\right) \quad B=\left(\begin{array}{ccccc}1 & -3 & 0 & 5 & 2 \\ 0 & 0 & 2 & -3 & 1 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) Find a basis for the null space $\operatorname{Null}(A)$ of A.
b) Find a basis for the column space of A.
c) Find a basis for the row space of A.
2. (15 points)
(a) Show that the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}-5 & 3 & 6 \\ -6 & 4 & 6 \\ 0 & 0 & 1\end{array}\right)$ is $-(\lambda-1)^{2}(\lambda+2)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$
P^{-1} A P=D
$$

3. (15 point) i) Let A be a 6×10 matrix (6 rows and 10 columns). Denote the dimension of the null space of A by k.
(a) Express the rank of A in terms of k. $\operatorname{rank}(A)=$ \qquad .
(b) Express the dimension of the column space of A in terms of k. $\operatorname{dim}(\operatorname{Col}(A))=$ \qquad
ii) Let A be a 3×2 matrix and B a 2×3 matrix. Their product $A B$ is thus a 3×3 matrix.
(a) Show that each column of $A B$ is a linear combination of the columns of A. Conclude, that the column space $\operatorname{Col}(A B)$ is a subspace of $\operatorname{Col}(A)$.
(b) Show that $\operatorname{Null}(B)$ is a subspace of $\operatorname{Null}(A B)$.
(c) Use your work above to show that $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.
(d) Can the product $A B$ be invertible? Justify your answer!
4. (15 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$ are eigenvectors of the matrix $A=\left(\begin{array}{cc}.7 & .3 \\ .3 & .7\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad
The eigenvalue of v_{2} is \qquad
(b) Find the coordinates of $\binom{1}{2}$ in the basis $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{100}\binom{1}{2}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{2}$ approaches \qquad . Justify your answer.
5. (15 points) Let $A=\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ 2 & -1\end{array}\right]$.
(a) Find the projection of $b=\left[\begin{array}{c}-1 \\ 11 \\ 3\end{array}\right]$ to the plane $\operatorname{col}(A)$ spanned by the columns of A.
(b) Find the distance from b to $\operatorname{col}(A)$.
(c) Find a least square solution of the equation $A x=b$. I.e., find a vector x in \mathbb{R}^{2}, for which the distance $\|A x-b\|$ from $A x$ to b is minimal.
6. (15 points) Let $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{c}3 \\ 4 \\ -1\end{array}\right]$.
(a) Write v as a sum $v=\hat{v}+u_{2}$ of a vector \hat{v} parallel to u_{1} and a vector u_{2} orthogonal to u_{1}.
(b) Find the distance from v to the line spanned by u_{1}.
(c) Find an orthogonal basis for the plane W in \mathbb{R}^{3} spanned by u_{1} and v.
(d) Find a vector u_{3}, such that the above two vectors u_{1}, u_{2} combine with u_{3} to give an orthogonal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of \mathbb{R}^{3}.
7. (10 points)
(a) Find the inverse P^{-1} of the matrix $P=\left(\begin{array}{lll}2 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$.
(b) Denote the j-th column of P by p_{j}. Let A be the 3×3 matrix satisfying

$$
A p_{1}=2 p_{1}, \quad A p_{2}=-p_{2}, \quad A p_{3}=p_{3} .
$$

Calculate A. (Check that the A you found satisfies the three equations!). Hint: First find $P^{-1} A P$.

