Math 235 Final Exam Fall 2001

1. (16 points) The matrices A and B below are row equivalent (you do **not** need to check this fact).

$$A = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ -2 & 1 & 0 & 0 & -2 & 1 \\ 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 2 & -2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & -1 \\ 0 & 1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Find a basis for the null space Null(A) of A.
- b) Find a basis for the column space of A.
- c) Find a basis for the row space of A.
- 2. (16 points)
 - (a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix} 6 & 0 & -4 \\ 0 & 1 & 0 \\ 8 & 0 & -6 \end{pmatrix}$ is $-(\lambda-1)(\lambda+2)(\lambda-2)$.
 - (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

- 3. (4 point) Let A be a 6×10 matrix (6 rows and 10 columns). Denote the dimension of the column space of A by r.
 - (a) The dimension r of the column space must be in the range $__ \le r \le __$.
 - (b) Express the dimension of the null space of A in terms of r. dim $\text{Null}(A) = \underline{\hspace{1cm}}$.
 - (c) Express the dimension of the row space of A in terms of r. dim $\text{Row}(A) = \underline{\hspace{1cm}}$.
- 4. (16 points) The vectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .7 & .3 \\ .3 & .7 \end{pmatrix}$.
 - (a) The eigenvalue of v_1 is _____

The eigenvalue of v_2 is _____

- (b) Find the coordinates of $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.
- (c) Compute $A^{100} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- (d) As n gets larger, the vector $A^n\begin{pmatrix} 1\\2 \end{pmatrix}$ approaches ____. Justify your answer.

- 5. (16 points) Let W be the plane in \mathbb{R}^3 spanned by $u_1 = \begin{bmatrix} 4 \\ -1 \\ -8 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -7 \\ 4 \\ -4 \end{bmatrix}$.
 - (a) Find the projection $\operatorname{Proj}_W(v)$ of $v = \begin{bmatrix} 8 \\ 7 \\ -7 \end{bmatrix}$ to W.
 - (b) Find the distance from v to W.
 - (c) Set $u_3 := v \operatorname{Proj}_W(v)$ and let U be the 3×3 matrix with columns $u_1, u_2,$ and u_3 . Show that $\frac{1}{9}U$ is an **orthogonal** matrix.
 - (d) Find the distance, from the vector $\left(\frac{1}{9}U^T\right)v$ to the plane in \mathbb{R}^3 spanned by the vactors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, without any further calculations. Explain your answer!

Hint: where does $\frac{1}{9}U$ take the three vectors above?

- (e) $\frac{1}{9}U$ is the matrix of a rotation of \mathbb{R}^3 about a line L through the origin (you may assume this fact). Find a vector w which spans the line L (the axis of rotation).
- 6. (16 points) Let W be the plane in \mathbb{R}^3 spanned by $a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $a_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$
 - (a) Find the projection of a_2 to the line spanned by a_1 .
 - (b) Find the distance from a_2 to the line spanned by a_1 .
 - (c) Use your calculations in parts 6a and 6b to show that the vectors $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ form an orthogonal basis of the plane W given above.
 - (d) Find the projection of $b = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$ to W.
 - (e) Find a least square solution of the equation Ax = b, where $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$ is the 3×2 matrix with columns a_1 and a_2 . I.e., find a vector x in \mathbb{R}^2 , for which the distance ||Ax b|| from Ax to b is minimal.

7. (16 points)

- (a) Find the matrix A of the rotation of \mathbb{R}^2 an angle of $\frac{\pi}{4}$ radians (45°) counter-clockwise.
- (b) Find the matrix B of the reflection of the plane about the line $x_2 = 0$ (the x_1 coordinate line).
- (c) Compute $C = B^{-1}AB$.
- (d) Show that C is the matrix of a rotation and find the angle of rotation.