1. (16 points) The matrices $A$ and $B$ below are row equivalent (you do not need to check this fact).

$$
A=\left(\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & -2 & 1 \\
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 2 & -2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & -1 \\
0 & 1 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a) Find a basis for the null space $\operatorname{Null}(A)$ of $A$.
b) Find a basis for the column space of $A$.
c) Find a basis for the row space of $A$.
2. (16 points)
(a) Show that the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}6 & 0 & -4 \\ 0 & 1 & 0 \\ 8 & 0 & -6\end{array}\right)$ is $-(\lambda-1)(\lambda+2)(\lambda-2)$.
(b) Find a basis of $\mathbb{R}^{3}$ consisting of eigenvectors of $A$.
(c) Find an invertible matrix $P$ and a diagonal matrix $D$ such that the matrix $A$ above satisfies

$$
P^{-1} A P=D
$$

3. (4 point) Let $A$ be a $6 \times 10$ matrix ( 6 rows and 10 columns). Denote the dimension of the column space of $A$ by $r$.
(a) The dimension $r$ of the column space must be in the range
$\qquad$ $\leq r \leq$ $\qquad$ -.
(b) Express the dimension of the null space of $A$ in terms of $r$. $\operatorname{dim} \operatorname{Null}(A)=$ $\qquad$ -
(c) Express the dimension of the row space of $A$ in terms of $r$. $\operatorname{dim} \operatorname{Row}(A)=$ $\qquad$
4. (16 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$ are eigenvectors of the matrix $A=\left(\begin{array}{cc}.7 & .3 \\ .3 & .7\end{array}\right)$.
(a) The eigenvalue of $v_{1}$ is $\qquad$
The eigenvalue of $v_{2}$ is $\qquad$
(b) Find the coordinates of $\binom{1}{2}$ in the basis $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{100}\binom{1}{2}$.
(d) As $n$ gets larger, the vector $A^{n}\binom{1}{2}$ approaches $\qquad$ . Justify your answer.
5. (16 points) Let $W$ be the plane in $\mathbb{R}^{3}$ spanned by $u_{1}=\left[\begin{array}{c}4 \\ -1 \\ -8\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}-7 \\ 4 \\ -4\end{array}\right]$.
(a) Find the projection $\operatorname{Proj}_{W}(v)$ of $v=\left[\begin{array}{c}8 \\ 7 \\ -7\end{array}\right]$ to $W$.
(b) Find the distance from $v$ to $W$.
(c) Set $u_{3}:=v-\operatorname{Proj}_{W}(v)$ and let $U$ be the $3 \times 3$ matrix with columns $u_{1}, u_{2}$, and $u_{3}$. Show that $\frac{1}{9} U$ is an orthogonal matrix.
(d) Find the distance, from the vector $\left(\frac{1}{9} U^{T}\right) v$ to the plane in $\mathbb{R}^{3}$ spanned by the vactors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, without any further calculations. Explain your answer! Hint: where does $\frac{1}{9} U$ take the three vectors above?
(e) $\frac{1}{9} U$ is the matrix of a rotation of $\mathbb{R}^{3}$ about a line $L$ through the origin (you may assume this fact). Find a vector $w$ which spans the line $L$ (the axis of rotation).
6. (16 points) Let $W$ be the plane in $\mathbb{R}^{3}$ spanned by $a_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $a_{2}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
(a) Find the projection of $a_{2}$ to the line spanned by $a_{1}$.
(b) Find the distance from $a_{2}$ to the line spanned by $a_{1}$.
(c) Use your calculations in parts 6 a and 6 b to show that the vectors $u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ form an orthogonal basis of the plane $W$ given above.
(d) Find the projection of $b=\left(\begin{array}{l}2 \\ 4 \\ 0\end{array}\right)$ to $W$.
(e) Find a least square solution of the equation $A x=b$, where $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 1 & 0\end{array}\right]$ is the $3 \times 2$ matrix with columns $a_{1}$ and $a_{2}$. I.e., find a vector $x$ in $\mathbb{R}^{2}$, for which the distance $\|A x-b\|$ from $A x$ to $b$ is minimal.
7. (16 points)
(a) Find the matrix $A$ of the rotation of $\mathbb{R}^{2}$ an angle of $\frac{\pi}{4}$ radians ( $\left.45^{\circ}\right)$ counter-clockwise.
(b) Find the matrix $B$ of the reflection of the plane about the line $x_{2}=0$ (the $x_{1}$ coordinate line).
(c) Compute $C=B^{-1} A B$.
(d) Show that $C$ is the matrix of a rotation and find the angle of rotation.
