Math $235 \quad$ Final Exam Fall 2015

1. (20 points)
(a) Show that the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}5 & 0 & 4 \\ -2 & 3 & -4 \\ 2 & 0 & 7\end{array}\right)$ is $-(\lambda-3)^{2}(\lambda-9)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$
P^{-1} A P=D
$$

(d) Let B be a 5×5 matrix with characteristic polynomial $-(\lambda-1)^{2}(\lambda-2)(\lambda-3)(\lambda-4)$. Assume that the rank of $B-I$ is 3 . Is B necessarily diagonalizable? Justify your answer.
2. (20 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{4}{-3}$ are eigenvectors of the $\operatorname{matrix} A=\left(\begin{array}{cc}.6 & .4 \\ .3 & .7\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad

The eigenvalue of v_{2} is \qquad
(b) Find the coordinates of $\binom{1}{8}$ in the basis $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{20}\binom{1}{8}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{8}$ approaches \qquad . Justify your answer.
(e) Let B be an invertible $n \times n$ matrix and v an eigenvector of B with eigenvalue 5. Show that v is an eigenvector of the inverse matrix B^{-1} as well and compute its eigenvalue.
3. (20 points) Let $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 2 & -1\end{array}\right]$ and $b=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$.
(a) Find the projection of b to the plane $\operatorname{Col}(A)$ spanned by the columns of A.
(b) Find the distance from b to $\operatorname{Col}(A)$.
(c) Find a vector x in \mathbb{R}^{2}, for which the distance $\|A x-b\|$ from $A x$ to b is equal to the distance from b to $\operatorname{Col}(A)$. Hint: The vector $A x$ is in $\operatorname{Col}(A)$ for every vector x.
4. (20 points) Consider the following orthogonal basis of \mathbb{R}^{3}
$v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$, and $v_{3}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$.
(a) Find the coordinates of the vector $b=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ in the above basis.
(b) Normalize the above basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ to an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$.
(c) Let A be an $n \times n$ orthogonal matrix and v an eigenvector of A in \mathbb{R}^{n}. Show that the eigenvalue of v is either 1 or -1 . Hint: Consider the length of $A v$.
5. (20 points)
(a) If the null space of an 8×5 matrix is 2 dimensional, what is the dimension of the row space of A ? Justify your answer.
(b) Show that the first three Laguerre polynomials $\left\{1,1-t, 2-4 t+t^{2}\right\}$ form a basis of \mathbb{P}_{2}. Explain, in complete sentences, why it is linearly independent and why it spans \mathbb{P}_{2}.
(c) Let \mathcal{B} be the basis $\left\{\binom{1}{-4},\binom{-2}{9}\right\}$ of \mathbb{R}^{2} and []$_{\mathcal{B}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the coordinate linear transformation sending a vector v to its coordinate vector $[v]_{\mathcal{B}}$ relative to the basis \mathcal{B}. Find the matrix A of the linear transformation [$]_{\mathcal{B}}$. Justify your answer! Hint: Multiplication by A should transform a vector v into its coordinate vector $[v]_{\mathcal{B}}$.

