1. (20 points)

- (a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix} 5 & 0 & 4 \\ -2 & 3 & -4 \\ 2 & 0 & 7 \end{pmatrix}$ is $-(\lambda 3)^2(\lambda 9)$.
- (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
- (c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

- (d) Let B be a 5×5 matrix with characteristic polynomial $-(\lambda-1)^2(\lambda-2)(\lambda-3)(\lambda-4)$. Assume that the rank of B-I is 3. Is B necessarily diagonalizable? Justify your answer.
- 2. (20 points) The vectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .6 & .4 \\ .3 & .7 \end{pmatrix}$.
 - (a) The eigenvalue of v_1 is _____

The eigenvalue of v_2 is _____

- (b) Find the coordinates of $\begin{pmatrix} 1 \\ 8 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.
- (c) Compute $A^{20} \begin{pmatrix} 1 \\ 8 \end{pmatrix}$.
- (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 8 \end{pmatrix}$ approaches _____. Justify your answer.
- (e) Let B be an invertible $n \times n$ matrix and v an eigenvector of B with eigenvalue 5. Show that v is an eigenvector of the inverse matrix B^{-1} as well and compute its eigenvalue.
- 3. (20 points) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -1 \end{bmatrix}$ and $b = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$.
 - (a) Find the projection of b to the plane Col(A) spanned by the columns of A.
 - (b) Find the distance from b to Col(A).
 - (c) Find a vector x in \mathbb{R}^2 , for which the distance ||Ax b|| from Ax to b is equal to the distance from b to $\operatorname{Col}(A)$. Hint: The vector Ax is in $\operatorname{Col}(A)$ for every vector x.

4. (20 points) Consider the following orthogonal basis of \mathbb{R}^3

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \text{ and } v_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$$

- (a) Find the coordinates of the vector $b = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ in the above basis.
- (b) Normalize the above basis $\{v_1, v_2, v_3\}$ to an orthonormal basis $\{u_1, u_2, u_3\}$.
- (c) Let A be an $n \times n$ orthogonal matrix and v an eigenvector of A in \mathbb{R}^n . Show that the eigenvalue of v is either 1 or -1. Hint: Consider the length of Av.

5. (20 points)

- (a) If the null space of an 8×5 matrix is 2 dimensional, what is the dimension of the row space of A? Justify your answer.
- (b) Show that the first three Laguerre polynomials $\{1, 1-t, 2-4t+t^2\}$ form a basis of \mathbb{P}_2 . Explain, **in complete sentences**, why it is linearly independent and why it spans \mathbb{P}_2 .
- (c) Let \mathcal{B} be the basis $\left\{ \begin{pmatrix} 1 \\ -4 \end{pmatrix}, \begin{pmatrix} -2 \\ 9 \end{pmatrix} \right\}$ of \mathbb{R}^2 and $[\]_{\mathcal{B}}: \mathbb{R}^2 \to \mathbb{R}^2$ the coordinate linear transformation sending a vector v to its coordinate vector $[v]_{\mathcal{B}}$ relative to the basis \mathcal{B} . Find the matrix A of the linear transformation $[\]_{\mathcal{B}}$. Justify your answer! Hint: Multiplication by A should transform a vector v into its coordinate vector $[v]_{\mathcal{B}}$.