Math 235 section $4 \quad$ Solution of Midterm $1 \quad$ Fall 2008

1. (15 points) a) Show that the row reduced echelon form of the augmented matrix of the system
$x_{1}+x_{3}-x_{4}-2 x_{5}=2$
$x_{1}+x_{2}+3 x_{3}=1$
$2 x_{1}+2 x_{3}+x_{4}+5 x_{5}=1$
is $\left(\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 3 & -1\end{array}\right)$. Use at most five elementary operations. Show all your work. Clearly write in words each elementary row operation you used.

Answer: Add $-R_{1}$ to $R_{2}$. Add $-2 R_{1}$ to $R_{3}$. Multiply $R_{3}$ by $1 / 3$. Add $-R_{3}$ to $R_{2}$. Add $R_{3}$ to $R_{1}$.
b) Find the general solution for the system.

Answer: The free variables are $x_{3}$ and $x_{5}$.
$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1 \\ 0\end{array}\right)+x_{3}\left(\begin{array}{c}-1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right)+x_{5}\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ -3 \\ 1\end{array}\right)$.
2. (20 points) You are given that the row reduced echelon form of the matrix
$A=\left(\begin{array}{cccccc}3 & 6 & 1 & 2 & 6 & -4 \\ 0 & 0 & 0 & 1 & 2 & -1 \\ 1 & 2 & 0 & 0 & 1 & -1 \\ 1 & 2 & 2 & 0 & -1 & 1\end{array}\right)$ is $B=\left(\begin{array}{cccccc}1 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. You do not
need to verify this statement.
(a) Write the general solutions of the system $A \vec{x}=\overrightarrow{0}$ in parametric form $\vec{x}=($ first free variable $) \vec{v}_{1}+($ second free variable $) \vec{v}_{2}+\ldots$
Answer: The free variables are $x_{2}, x_{5}$, and $x_{6}$.

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
-2 x_{2}-x_{5}+x_{6} \\
x_{2} \\
x_{5}-x_{6} \\
-2 x_{5}+x_{6} \\
x_{5} \\
x_{6}
\end{array}\right)=x_{2}\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
-2 \\
1 \\
0
\end{array}\right)+x_{6}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0 \\
1
\end{array}\right) .
$$

(b) Let $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ be the linear transformations given by $T(\vec{x})=A \vec{x}$. Find a finite set of vectors in $\operatorname{ker}(T)$, which spans $\operatorname{ker}(T)$. Explain why the set you found spans $\operatorname{ker}(T)$.
Answer: Note: The word "finite" was missing in the exam version, so other solutions were given full credit.
The kernel $\operatorname{ker}(T)$ is the set of solutions of the equation $A \vec{x}=\overrightarrow{0}$. We wrote the general solution $\vec{x}$ as a linear combination $\vec{x}=x_{2} \vec{v}_{1}+x_{5} \vec{v}_{2}+x_{6} \vec{v}_{3}$, for the three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ given on the right hand side of the answer to part 2a. Hence, $\operatorname{ker}(T)$ is the set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. The latter
is, by definition $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. We conclude that the set of three vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ spans $\operatorname{ker}(T)$.
(c) Let $\vec{a}_{j}$ be the $j$-th column of $A$. Explain, without any further calculations, why $\vec{a}_{6}$ belongs to span $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}, \vec{a}_{5}\right\}$.
Answer: Regard the matrix $A$ as the augmented matrix $\left(C \mid \vec{a}_{6}\right)$, where $C=$ $\left(\vec{a}_{1} \vec{a}_{2} \vec{a}_{3} \vec{a}_{4} \vec{a}_{5}\right)$ is the $4 \times 5$ coefficient matrix of a linear system $C \vec{x}=\vec{a}_{6}$. Since the row reduced echelon form $B$ does not have a pivot in the rightmost column, then the system $C \vec{x}=\vec{a}_{6}$ is consistent. Hence $\vec{a}_{6}$ is a linear combination of the columns of $C$.
(d) Is the image of $T$ equal to the whole of $\mathbb{R}^{4}$ ? Justify your answer.

Answer: No, since we do not have a pivot position in every row.
3. (a) (10 points) Determine for which values of $k$ the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 4 & k+1\end{array}\right)$ is invertible, and find the inverse when it exists.
Answer: We row reduce $(A \mid I)$ attempting to get $\left(I \mid A^{-1}\right)$. The values of $k$ for which we succeed below are those for which the matrix is invertible.
Add $-R_{1}$ to $R_{2}$ and add $-R_{1}$ to $R_{3}$. Then add -3 times $R_{2}$ to $R_{3}$ to get $\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 4 & k+1 & 0 & 0 & 1\end{array}\right) \sim\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & k & 2 & -3 & 1\end{array}\right)$.
We see that the matrix is invertible for all values of $k$ except $k=0$. Assuming $k \neq 0$, divide $R_{3}$ by $k$, subtract $R_{3}$ from $R_{1}$, and subtract $R_{2}$ from $R_{1}$ to get

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & k & 2 & -3 & 1
\end{array}\right) \sim\left(\begin{array}{cccccc}
1 & 0 & 0 & 2-\frac{2}{k} & -1+\frac{3}{k} & \frac{-1}{k} \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{2}{k} & \frac{-3}{k} & \frac{1}{k}
\end{array}\right) .
$$

(b) (2 points) Check that the matrix you found is indeed $A^{-1}$.

Answer: $A A^{-1}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 4 & k+1\end{array}\right)\left(\begin{array}{ccc}2-\frac{2}{k} & -1+\frac{3}{k} & \frac{-1}{k} \\ -1 & 1 & 0 \\ \frac{2}{k} & \frac{-3}{k} & \frac{1}{k}\end{array}\right)=I$.
(c) (8 points) Let $A, B, C$ be $n \times n$ matrices, with $A$ invertible, which satisfy the equation $A C A^{-1}-A=B$. Express $C$ in terms of $A$ and $B$.
Answer: Add $A$ to both sides to get $A C A^{-1}=A+B$. Multiply both sides by $A^{-1}$ on the left to get $C A^{-1}=A^{-1}(A+B)$. Multiply both sides by $A$ on the right to get $C=A^{-1}(A+B) A=A+A^{-1} B A$.
4. (20 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix $A$. Assume that the image of $T$ is the whole of $\mathbb{R}^{2}$. Carfully justify your answers to the following questions.
(a) The rank of $A$ is: $\underline{2}$

Reason: The image $\operatorname{im}(T)$ is the whole of $\mathbb{R}^{2}$, if and only if $A$ has a pivot in every row. $A$ is a $2 \times 3$ matrix, so $A$ has two pivot positions.
(b) Describe geometrically the kernel of $T$.

Answer: The kernel $\operatorname{ker}(T)$ is the set of solutions of $A \vec{x}=\overrightarrow{0}$. $A$ has two pivots, so the system has precisely one free variable $x_{i}$. The set of solutions thus has the parametric form $x_{i} \vec{v}$, for some non-zero vector $\vec{v}$. Thus $\operatorname{ker}(T)$ is the LINE in $\mathbb{R}^{3}$ spanned by $\vec{v}$, i.e., the line through $\overrightarrow{0}$ and $\vec{v}$.
(c) Consider the standard matrix $A$ of $T$. Fix one solution $\vec{p}$ of the equation

$$
\begin{equation*}
A \vec{x}=\binom{1}{2} . \tag{1}
\end{equation*}
$$

i. Show that if a vector $\vec{x}$ is a solution of the above equation, then $\vec{x}-\vec{p}$ is in the kernel of $T$.
Answer: Assume that $\vec{x}$ is a solution of the above equation. Then $T(\vec{x}-\vec{p})=A(\vec{x}-\vec{p})=A \vec{x}-A \vec{p}=\binom{1}{2}-\binom{1}{2}=\overrightarrow{0}$.
ii. Conversely, show that if $\vec{x}-\vec{p}$ is in the kernel of $T$, then $\vec{x}$ is a solution of equation (1).

Answer: Assume that $\vec{x}-\vec{p}$ belongs to the kernel of $T$. Then $\overrightarrow{0}=T(\vec{x}-\vec{p})=A(\vec{x}-\vec{p})=A \vec{x}-A \vec{p} . \quad$ So $A \vec{x}=A \vec{p}=\binom{1}{2}$.
5. (25 points) Let $L$ be the line in $\mathbb{R}^{2}$ through the origin and the non-zero vector $\vec{u}$. Recall that the projection $\operatorname{Proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the plane onto the line $L$ is given by the formula $\operatorname{Proj}_{L}(\vec{x})=\left(\frac{\vec{u} \cdot \vec{x}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$.
(a) Use the algebraic properties of the dot product to show that $\operatorname{Proj}_{L}$ is a linear transformation. In other words, verify the following identities, for any two vectors $\vec{v}, \vec{w}$ and for every scalar $k$.
i. $\operatorname{Proj}_{L}(\vec{v}+\vec{w})=\operatorname{Proj}_{L}(\vec{v})+\operatorname{Proj}_{L}(\vec{w})$.

Answer: $\operatorname{Proj}_{L}(\vec{v}+\vec{w})=\left(\frac{\vec{u} \cdot(\vec{v}+\vec{w})}{\vec{u} \cdot \vec{u}}\right) \vec{u}=\left(\frac{(\vec{u} \cdot \vec{v})+(\vec{u} \cdot \vec{w})}{\vec{u} \cdot \vec{u}}\right) \vec{u}=$
$\left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}}\right) \vec{u}+\left(\frac{\vec{u} \cdot \vec{w}}{\vec{u} \cdot \vec{u}}\right) \vec{u}=\operatorname{Proj}_{L}(\vec{v})+\operatorname{Proj}_{L}(\vec{w})$.
ii. $\operatorname{Proj}_{L}(k \vec{v})=k \operatorname{Proj}_{L}(\vec{v})$.

Answer: $\operatorname{Proj}_{L}(k \vec{v})=\left(\frac{\vec{u} \cdot(k \vec{v})}{\vec{u} \cdot \vec{u}}\right) \vec{u}=\left(\frac{k(\vec{u} \cdot \vec{v})}{\vec{u} \cdot \vec{u}}\right) \vec{u}=k \operatorname{Proj}_{L}(\vec{v})$.
(b) Let $u=(1,1)$. Use the above formula for $\operatorname{Proj}_{L}(\vec{x})$ to find the standard matrix $P$ of $\operatorname{Proj}_{L}$.
Answer: Recall that we find the matrix of a linear transformation column by column. Write $P=\left(\vec{p}_{1} \vec{p}_{2}\right)$. Then

$$
\begin{aligned}
& p_{1}=P\binom{1}{0}=\operatorname{Proj}_{L}\binom{1}{0}=\frac{\binom{1}{1} \cdot\binom{1}{0}}{\binom{1}{1} \cdot\binom{1}{1}}\binom{1}{1}=\frac{1}{2}\binom{1}{1} . \\
& p_{2}=P\binom{0}{1}=\operatorname{Proj}_{L}\binom{0}{1}=\frac{\binom{1}{1} \cdot\binom{0}{1}}{\binom{1}{1} \cdot\binom{1}{1}}\binom{1}{1}=\frac{1}{2}\binom{1}{1} .
\end{aligned}
$$

So $P=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$.
(c) Find the matrix $R$ of the rotation of the plane 90 degrees counterclockwise.

Answer: We get the equality $R=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ either by using the general formula for the rotation $R=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$, with $\theta$ equal 90 degrees, or we write $R=\left(\overrightarrow{r_{1}} \overrightarrow{r_{2}}\right)$ and find $R$ column by column.
(d) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation, which first rotates a vector 90 degrees counterclockwise, and then projects the resulting vector onto the line $L$. Express the standard matrix $A$ of $T$ in terms of the standard matrices $P$ of $\operatorname{Proj}_{L}$ and $R$ of the rotation: $\quad A=\underline{P R}$.
Use this expression to compute $A$.
Answer: $A=P R=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right)$.
(e) (5 bonus points) Find a vector $\vec{v}$ in $\mathbb{R}^{2}$, such that the linear transformation $T$ in part 5 d admits the new description $T(\vec{x})=R\left(\operatorname{Proj}_{\widetilde{L}}(\vec{x})\right)$, where $\widetilde{L}$ is the line through the origin and $\vec{v}$. Justify your answer.

Answer: Let $\widetilde{P}$ be the standard matrix of $\operatorname{Proj}_{\widetilde{L}}$. Then $R \widetilde{P}=P R$. So $\widetilde{P}=R^{-1} P R$. Now it is easy to visualize that the linear transformation, which takes $\vec{x}$ to $R^{-1} P R \vec{x}$, is the projection onto the line $\widetilde{L}=R^{-1}(L)$ obtained from $L$ by rotating 90 degrees clockwise. The line $\widetilde{L}$ in $\mathbb{R}^{2}$ is cut out by the equation $x_{2}=-x_{1}$. We could choose any non-zero vector $\vec{v}$ in $\widetilde{L}$, for example $\vec{v}=\binom{1}{-1}$. If you have difficulty visualizing, simply compute $R^{-1} P R$ and note that it is indeed the matrix of a projection onto the line spanned by either one of its columns.

