Math 235 section $4 \quad$ Midterm $1 \quad$ Fall 2008

Name: \qquad

1. (15 points) a) Show that the row reduced echelon form of the augmented matrix $\begin{array}{ll}x_{1}+x_{3}-x_{4}-2 x_{5} & =2 \\ x_{1}+x_{2}+3 x_{3} & =1 \\ 2 x_{1}+2 x_{3}+x_{4}+5 x_{5} & =1\end{array}$ is $\left(\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 3 & -1\end{array}\right)$. Use at most five elementary operations. Show all your work. Clearly write in words each elementary row operation you used.
b) Find the general solution for the system.

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=
$$

2. (20 points) You are given that the row reduced echelon form of the matrix $A=\left(\begin{array}{cccccc}3 & 6 & 1 & 2 & 6 & -4 \\ 0 & 0 & 0 & 1 & 2 & -1 \\ 1 & 2 & 0 & 0 & 1 & -1 \\ 1 & 2 & 2 & 0 & -1 & 1\end{array}\right)$ is $B=\left(\begin{array}{cccccc}1 & 2 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. You do not need to verify this statement.
(a) Write the general solutions of the system $A \vec{x}=\overrightarrow{0}$ in parametric form $\vec{x}=($ first free variable $) \vec{v}_{1}+($ second free variable $) \vec{v}_{2}+\ldots$
(b) Let $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}$ be the linear transformations given by $T(\vec{x})=A \vec{x}$. Find a finite set of vectors in $\operatorname{ker}(T)$, which spans $\operatorname{ker}(T)$. Explain why the set you found spans $\operatorname{ker}(T)$.
(c) Let \vec{a}_{j} be the j-th column of A. Explain, without any further calculations, why \vec{a}_{6} belongs to span $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}, \vec{a}_{5}\right\}$.
(d) Is the image of T equal to the whole of \mathbb{R}^{4} ? Justify your answer.
3. (a) (10 points) Determine for which values of k is the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 4 & k+1\end{array}\right)$ invertible, and compute the inverse, when it exists.
(b) (2 points) Check that the matrix you found is indeed A^{-1}.
(c) (8 points) Let A, B, C be $n \times n$ matrices, with A invertible, which satisfy the equation $A C A^{-1}-A=B$. Express C in terms of A and B. Show all your work.
4. (20 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix A. Assume that the image of T is the whole of \mathbb{R}^{2}. Carfully justify your answers to the following questions.
(a) The rank of A is: \qquad .
(b) Describe geometrically the kernel of T.
(c) Consider the standard matrix A of T. Fix one solution \vec{p} of the equation

$$
A \vec{x}=\binom{1}{2} .
$$

Show that if a vector \vec{x} is a solution of the above equation, then $\vec{x}-\vec{p}$ belongs to the kernel of T. Show also the converse: If $\vec{x}-\vec{p}$ belongs to the kernel of T, then the vector \vec{x} is a solution of the above equation.
5. (25 points) Let L be the line in \mathbb{R}^{2} through the origin and the non-zero vector \vec{u}. Recall that the projection $\operatorname{Proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the plane onto the line L is given by the formula $\operatorname{Proj}_{L}(\vec{x})=\left(\frac{\vec{u} \cdot \vec{x}}{\vec{u} \cdot \vec{u}}\right) \vec{u}$.
(a) Use the algebraic properties of the dot product to show that Proj_{L} is a linear transformation. In other words, verify the following identities, for any two vectors \vec{v}, \vec{w} and for every scalar k.
i. $\operatorname{Proj}_{L}(\vec{v}+\vec{w})=\operatorname{Proj}_{L}(\vec{v})+\operatorname{Proj}_{L}(\vec{w})$.
ii. $\operatorname{Proj}_{L}(k \vec{v})=k \operatorname{Proj}_{L}(\vec{v})$.
(b) Let $u=(1,1)$. Use the above formula for $\operatorname{Proj}_{L}(\vec{x})$ to find the standard matrix P of Proj_{L}.
(c) Find the matrix R of the rotation of the plane 90 degrees counterclockwise.
(d) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation, which first rotates a vector 90 degrees counterclockwise, and then projects the resulting vector onto the line L. Express the standard matrix A of T in terms of the standard matrices P of Proj_{L} and R of the rotation: $A=$ \qquad .
Use this expression to compute A.
(e) (5 bonus points) Find a vector \vec{v} in \mathbb{R}^{2}, such that the linear transformation T in part 5 d admits the new description $T(\vec{x})=R\left(\operatorname{Pro}_{\widetilde{L}}(\vec{x})\right)$, where \widetilde{L} is the line through the origin and \vec{v}. Justify your answer.

