1. (18 points) You are given below the matrix A together with its row reduced echelon form B (you need not verify that B is indeed the reduced echelon form of A)

$$A = \begin{pmatrix} 1 & -1 & -3 & -3 & 0 & -3 \\ 1 & 0 & 2 & 3 & 0 & 4 \\ 2 & 0 & 4 & 6 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 8 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 2 & 3 & 0 & 4 \\ 0 & 1 & 5 & 6 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) Find a spanning set for (i.e., a set of vectors which spans) the null space Null(A)of A.
- b) Are the column spaces col(A) and col(B) equal? Justify your answer carefully! (either explain why they are equal, or find a vector in one that does not belong to the other).
- 2. (16 points) Let $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be the 2×2 identity matrix and $A = \begin{pmatrix} 0 & 6 \\ 1 & 5 \end{pmatrix}$.
 - a) Show that the matrix A-5I is invertible. Note that A-5I is simply $\begin{pmatrix} -5 & 6 \\ 1 & 0 \end{pmatrix}$.
 - b) Express the determinant of the 2×2 matrix A tI in terms of the scalar parameter t.
 - c) Show that there are precisely two values of t for which the matrix A tI is not invertible. Find these values of t.
- 3. (18 points) Determine if the following set in \mathbb{R}^n is a subspace. If it is not, find a property in the definition of a subspace which this set violates. If it is a subspace, find a matrix A such that this set is either Null(A) or Col(A).

(a)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right\}$$
 such that x, y, z are real numbers satisfying $\begin{cases} 2x + 3y + 4z = 5 \\ x + z = 6 \end{cases} \right\}$
(b) $\left\{ \begin{bmatrix} a + 2b \\ b - 2c \\ 2c + 5d \\ c - a \end{bmatrix} \right\}$ such that a, b, c, d are arbitrary real numbers

(b)
$$\left\{ \begin{bmatrix} a+2b \\ b-2c \\ 2c+5d \\ c-a \end{bmatrix} \text{ such that } a,b,c,d \text{ are arbitrary real numbers} \right\}$$

4. (16 points) a) Compute the volume of the parallelepiped in \mathbb{R}^3 with vertices $\vec{0}$, v_1 , v_2 , v_3 , $v_1 + v_2$, $v_1 + v_3$, $v_2 + v_3$, $v_1 + v_2 + v_3$ where

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$$

- b) Let T be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 sending a vector \vec{x} to $A\vec{x}$, where A is the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c \end{bmatrix}$. Compute the volume of the parallelepiped obtained as the image of the one in part (a) under the transformation T. Express your answer in terms of a, b and c. Note: The image is the parallelepiped with
- 5. a) (6 points) Let A, B, and C be 3×3 matrices satisfying the equation

$$B^2 + 2B = ACA^{-1}$$

vertices $\vec{0}$, Av_1 , Av_2 , Av_3 , $A(v_1 + v_2)$, $A(v_1 + v_3)$, $A(v_2 + v_3)$, $A(v_1 + v_2 + v_3)$.

with A invertible. Solve for C in terms of A and B.

- b) (10 points) Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 3 \end{pmatrix}$ Compute its inverse A^{-1} . (Check that $AA^{-1} I$)
- c) (6 points) Compute the (2,3) entry of ABA^{-1} if A is given in part (b) and $B=\begin{pmatrix}1&2&3\\1&1&1\\1&0&1\end{pmatrix}$
- 6. (10 points) Let \mathbb{P}_2 be the vector space of polynomials of degree ≤ 2 . Recall that a vector in \mathbb{P}_2 is a polynomial p(t) of the form $p(t) = a_0 + a_1t + a_2t^2$ where the coefficients a_0, a_1, a_2 are arbitrary real numbers.
 - (a) Show that the subset H of \mathbb{P}_2 of polynomials p(t) of degree ≤ 2 which in addition satisfy

$$p(0) = 0$$
 and $p(1) = 0$

is a *subspace* of \mathbb{P}_2 . (The straightforward answer would include the definition of a subspace and a verification that H satisfies all the properties.)

(b) Find a spanning set for H. Explain why the set you found spans H.