Math 235 Section 1 Midterm $2 \quad$ Fall 2000

1. (18 points) You are given below the matrix A together with its row reduced echelon form B (you need not verify that B is indeed the reduced echelon form of A)
$A=\left(\begin{array}{cccccc}1 & -1 & -3 & -3 & 0 & -3 \\ 1 & 0 & 2 & 3 & 0 & 4 \\ 2 & 0 & 4 & 6 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 8\end{array}\right) \quad B=\left(\begin{array}{cccccc}1 & 0 & 2 & 3 & 0 & 4 \\ 0 & 1 & 5 & 6 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) Find a spanning set for (i.e., a set of vectors which spans) the null space $\operatorname{Null}(A)$ of A.
b) Are the column spaces $\operatorname{col}(A)$ and $\operatorname{col}(B)$ equal? Justify your answer carefully! (either explain why they are equal, or find a vector in one that does not belong to the other).
2. (16 points) Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ be the 2×2 identity matrix and $A=\left(\begin{array}{ll}0 & 6 \\ 1 & 5\end{array}\right)$. a) Show that the matrix $A-5 I$ is invertible. Note that $A-5 I$ is simply $\left(\begin{array}{cc}-5 & 6 \\ 1 & 0\end{array}\right)$. b) Express the determinant of the 2×2 matrix $A-t I$ in terms of the scalar parameter t.
c) Show that there are precisely two values of t for which the matrix $A-t I$ is not invertible. Find these values of t.
3. (18 points) Determine if the following set in \mathbb{R}^{n} is a subspace. If it is not, find a property in the definition of a subspace which this set violates. If it is a subspace, find a matrix A such that this set is either $\operatorname{Null}(A)$ or $\operatorname{Col}(A)$.
(a) $\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right.$ such that x, y, z are real numbers satisfying $\left.\begin{array}{cc}2 x+3 y+4 z= & 5 \\ x+z & =6\end{array}\right\}$
(b) $\left\{\left[\begin{array}{c}a+2 b \\ b-2 c \\ 2 c+5 d \\ c-a\end{array}\right]\right.$ such that a, b, c, d are arbitrary real numbers $\}$
(c) $\left\{\left[\begin{array}{l}x \\ y \\ z \\ w\end{array}\right]\right.$ such that x, y, z, w are real numbers satisfying $\left.\begin{array}{c}z=x+y \\ w=x-y\end{array}\right\}$
4. (16 points) a) Compute the volume of the parallelepiped in \mathbb{R}^{3} with vertices $\overrightarrow{0}, v_{1}, v_{2}, v_{3}, v_{1}+v_{2}, v_{1}+v_{3}, v_{2}+v_{3}, v_{1}+v_{2}+v_{3}$ where

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)
$$

b) Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} sending a vector \vec{x} to $A \vec{x}$, where A is the matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & c\end{array}\right]$. Compute the volume of the parallelepiped obtained as the image of the one in part (a) under the transformation T. Express your answer in terms of a, b and c. Note: The image is the parallelepiped with vertices $\overrightarrow{0}, A v_{1}, A v_{2}, A v_{3}, A\left(v_{1}+v_{2}\right), A\left(v_{1}+v_{3}\right), A\left(v_{2}+v_{3}\right), A\left(v_{1}+v_{2}+v_{3}\right)$.
5. a) (6 points) Let A, B, and C be 3×3 matrices satisfying the equation

$$
B^{2}+2 B=A C A^{-1}
$$

with A invertible. Solve for C in terms of A and B.
b) (10 points) Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 3\end{array}\right)$ Compute its inverse A^{-1}. (Check that $A A^{-1}=I$.)
c) (6 points) Compute the $(2,3)$ entry of $A B A^{-1}$ if A is given in part (b) and $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$
6. (10 points) Let \mathbb{P}_{2} be the vector space of polynomials of degree ≤ 2. Recall that a vector in \mathbb{P}_{2} is a polynomial $p(t)$ of the form $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$ where the coefficients a_{0}, a_{1}, a_{2} are arbitrary real numbers.
(a) Show that the subset H of \mathbb{P}_{2} of polynomials $p(t)$ of degree ≤ 2 which in addition satisfy

$$
p(0)=0 \text { and } p(1)=0
$$

is a subspace of \mathbb{P}_{2}. (The straightforward answer would include the definition of a subspace and a verification that H satisfies all the properties.)
(b) Find a spanning set for H. Explain why the set you found spans H.

