Math $235 \quad$ Final Exam Fall 2000

1. (15 points) The matrices A and B below are row equivalent (you do not need to check this fact).
$A=\left(\begin{array}{ccccc}1 & -2 & 1 & 1 & 1 \\ 2 & -4 & 0 & 1 & 3 \\ -3 & 6 & 1 & 1 & -3 \\ -1 & 2 & 0 & 1 & 0\end{array}\right) \quad B=\left(\begin{array}{ccccc}1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
a) What is the rank of A ?
b) Find a basis for the null space $\operatorname{Null}(A)$ of A.
c) Find a basis for the column space of A.
d) Find a basis for the row space of A.
2. (6 points) The system $A \vec{x}=0$ has a 2-dimensional space of solutions and the size of the matrix A is 6×5. What is the dimension of (a) the Null space of A ? (b) the Column space of A ? (c) the Row space of A ? Justify your answers!
3. (15 points)
(a) Show that the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}-1 & -2 & -4 \\ 0 & 0 & -1 \\ 0 & 2 & 3\end{array}\right)$ is $-(\lambda-1)(\lambda+1)(\lambda-2)$.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$
P^{-1} A P=D
$$

4. (12 points) Determine for which of the following matrices A below there exists an invertible matrix P (with real entries) such that $P^{-1} A P$ is a diagonal matrix. You do not need to find P. Justify your answers!
(a) $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
5. (20 points) Let W be the plane in \mathbb{R}^{3} spanned by $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$

Note: Parts 5a, 5b are mutually independent and are not needed for doing parts 5c, 5d, 5e.
(a) Find the distance between the two points v_{1} and v_{2} in \mathbb{R}^{3}.
(b) Find a vector of length 1 which is orthogonal to W.
(c) Find the projection of v_{2} to the line spanned by v_{1}.
(d) Write v_{2} as the sum of a vector parallel to v_{1} and a vector orthogonal to v_{1}.
(e) Find an orthogonal basis for W.
(f) Find an orthogonal 3×3 matrix U, such that the corresponding linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} takes the x_{1} axis to the line spanned by v_{1} and the x_{1}, x_{2} coordinate plan to W. Hint: Use parts $5 b$ and $5 d$.
6. (16 points) Let W be the plane in \mathbb{R}^{3} spanned by $u_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$
(a) Find the projection of $b=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$ to W.
(b) Find the distance from b to W.
(c) Find a least square solution of the equation $A x=b$, where $A=\left[\begin{array}{cc}1 & 2 \\ 1 & -1 \\ 1 & 2\end{array}\right]$ is the 3×2 matrix with columns u_{1} and $u_{1}+u_{2}$. I.e., find a vector x in \mathbb{R}^{2} which minimizes the length $\|A x-b\|$.
(d) Find the coefficients c_{0}, c_{1} of the line $y(x)=c_{0}+c_{1} x$ which best fits the three points $\left(x_{1}, y_{1}\right)=(1,2),\left(x_{2}, y_{2}\right)=(-2,1),\left(x_{3}, y_{3}\right)=(1,-2)$ in the x, y plane. The line should minimize the sum $\sum_{i=1}^{3}\left[y\left(x_{i}\right)-y_{i}\right]^{2}$. Justify your answer!
7. (16 points) The vectors $v_{1}=\binom{1}{1}$ and $v_{2}=\binom{1}{-1}$ are eigenvectors of the matrix $A=\left(\begin{array}{ll}.4 & .6 \\ .6 & .4\end{array}\right)$.
(a) The eigenvalue of v_{1} is \qquad

The eigenvalue of v_{2} is \qquad
(b) Find the coordinates of $\binom{1}{0}$ in the basis $\left\{v_{1}, v_{2}\right\}$.
(c) Compute $A^{50}\binom{1}{0}$.
(d) As n gets larger, the vector $A^{n}\binom{1}{0}$ approaches \qquad . Justify your answer.

