1. (15 points) The matrices A and B below are row equivalent (you do **not** need to check this fact).

$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 2 & -4 & 0 & 1 & 3 \\ -3 & 6 & 1 & 1 & -3 \\ -1 & 2 & 0 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- a) What is the rank of A?
- b) Find a basis for the null space Null(A) of A.
- c) Find a basis for the column space of A.
- d) Find a basis for the row space of A.
- 2. (6 points) The system $A\vec{x} = 0$ has a 2-dimensional space of solutions and the size of the matrix A is 6×5 . What is the dimension of (a) the Null space of A? (b) the Column space of A? (c) the Row space of A? Justify your answers!
- 3. (15 points)
 - (a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix} -1 & -2 & -4 \\ 0 & 0 & -1 \\ 0 & 2 & 3 \end{pmatrix}$ is $-(\lambda 1)(\lambda + 1)(\lambda 2)$.
 - (b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

- 4. (12 points) Determine for which of the following matrices A below there exists an invertible matrix P (with real entries) such that $P^{-1}AP$ is a diagonal matrix. You do **not** need to find P. **Justify your answers!**
 - (a) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - (c) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$
- 5. (20 points) Let W be the plane in \mathbb{R}^3 spanned by $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$

Note: Parts 5a, 5b are mutually independent and are not needed for doing parts 5c, 5d, 5e.

- (a) Find the distance between the two points v_1 and v_2 in \mathbb{R}^3 .
- (b) Find a vector of length 1 which is orthogonal to W.
- (c) Find the projection of v_2 to the line spanned by v_1 .
- (d) Write v_2 as the sum of a vector parallel to v_1 and a vector orthogonal to v_1 .
- (e) Find an orthogonal basis for W.
- (f) Find an orthogonal 3×3 matrix U, such that the corresponding linear transformation from \mathbb{R}^3 to \mathbb{R}^3 takes the x_1 axis to the line spanned by v_1 and the x_1 , x_2 coordinate plan to W. Hint: Use parts 5b and 5d.
- 6. (16 points) Let W be the plane in \mathbb{R}^3 spanned by $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$
 - (a) Find the projection of $b = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ to W.
 - (b) Find the distance from b to W.
 - (c) Find a least square solution of the equation Ax = b, where $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 2 \end{bmatrix}$ is the 3×2 matrix with columns u_1 and $u_1 + u_2$. I.e., find a vector x in \mathbb{R}^2 which minimizes the length ||Ax b||.
 - (d) Find the coefficients c_0 , c_1 of the line $y(x) = c_0 + c_1 x$ which best fits the three points $(x_1, y_1) = (1, 2)$, $(x_2, y_2) = (-2, 1)$, $(x_3, y_3) = (1, -2)$ in the x, y plane. The line should minimize the sum $\sum_{i=1}^{3} [y(x_i) y_i]^2$. Justify your answer!
- 7. (16 points) The vectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .4 & .6 \\ .6 & .4 \end{pmatrix}$.
 - (a) The eigenvalue of v_1 is _____

The eigenvalue of v_2 is _____

- (b) Find the coordinates of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.
- (c) Compute $A^{50} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
- (d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ approaches _____. Justify your answer.