
Math 697: Midterm

Problem 1 (a) Suppose Xn is a finite state Markov chain. Show that the set of stationary
distributions for Xn is a convex subset of the set of all probability vectors.
Hint: Recall that a subset A of a vector space is convex if x ∈ A and y ∈ A implies that
αx+ (1− α)y ∈ A for all 0 ≤ α ≤ 1.

(b) Consider the Markov chain on the state space {1, 2, · · · , 7} with transition matrix
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(1)

Find all communication classes. Determine if they are closed or transient, periodic or aperiodic.
Compute all stationary distributions.

(c) For the Markov chain of (b) compute limn→∞ P
n(6, i) and limn→∞ P

n(5, i) for all i ∈ S.

Problem 2 (a) Suppose Xn is a Markov chain with state space S and f : S → T is a map from
S to some set T . Show that Yn = f(Xn) is a Markov chain on the state space S′ = {f(j) ; j ∈ S}
if f is one-to-one. What if f is not one-to-one?
(b) Suppose Xn is an irreducible Markov chain on the finite state space S with stationary
distribution π. Let Yn ≡ (Xn, Xn+1). Show that Yn is a Markov chain. What is the state space
for Yn? What are the transition probabilities? What is the stationary distribution?
(c) Suppose Xn and Yn are two independent irreducible Markov chains with finite state space S
and T respectively, transition probabilities P and Q respectively, and stationary distribution π
and ν respectively. Show that Zn = (Xn, Yn) is a Markov chain, find the transition probabilities,
and the stationary distribution.
(d) A neighborhood has 2 bars, called 1 and 2. B.J. visits one of two bars every night, starting
in bar 1 according to the Markov chain with transition matrix

P =

(
.8 .2
.2 .8

)

while C.J. visits one of two same bars every night, starting in bar 2 according to the Markov
chain with transition matrix

P =

(
.3 .7
.7 .3

)
Find the expected time until they are in the same bar and the probability they meet in bar 2.
Hint: Use (c).
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Problem 3 Consider a sequence of random numbers U1, U2, U3, · · · (i.e. uniform random vari-
ables on [0, 1]). Let N be the first one that is greater than its immediate predecessor, i.e.,

N = min{n ; n ≥ 2 , Un > Un−1}

We will also need later the random variable

M = min{n ; n ≥ 2 , 1− Un > 1− Un−1} = min{n ; n ≥ 2 , Un < Un−1}

which has the same distribution as N .

(a) Show that P{N > n} = 1
n! and deduce from this that E[N ] = e

(
=
∑∞

n=0
1
n!

)
.

(b) Using the results of (a) compute the variance of the Monte-Carlo algorithm

IL =
1
L

L∑
j=1

Nj

which is an estimator for the number e.

(c) Observe that with probability 1/2 (i.e., if U1 > U2), N = 2, and that with probability 1/2,
N = 2+K where where K is the number of additional random numbers necessary to be observed
until one is observed to be greater than its prededessor, given that U2 < U1. Formally let K be
the random variable which takes the value 1, 2, 3, · · · and whose p.d.f is given by

P{K = j} = P{N = 2 + j |U1 > U2}

Use this relation to compute E[K] and Var(K).

(d) If one uses one sequence of random numbers to generate both N and M then N and M
are not independent ( for example one of them is always 2). Use (c) to compute in this case
Var(N +M).

(e) Formulate a Monte-Carlo algorithm to estimate e using M and N and shows that it has
smaller variance than the one in (b).
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