Math 697: Midterm

Problem 1 (a) Suppose X_{n} is a finite state Markov chain. Show that the set of stationary distributions for X_{n} is a convex subset of the set of all probability vectors.
Hint: Recall that a subset A of a vector space is convex if $x \in A$ and $y \in A$ implies that $\alpha x+(1-\alpha) y \in A$ for all $0 \leq \alpha \leq 1$.
(b) Consider the Markov chain on the state space $\{1,2, \cdots, 7\}$ with transition matrix

$$
P=\left(\begin{array}{ccccccc}
\frac{2}{3} & 0 & 0 & \frac{1}{3} & 0 & 0 & 0 \tag{1}\\
0 & \frac{1}{3} & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{5} & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Find all communication classes. Determine if they are closed or transient, periodic or aperiodic. Compute all stationary distributions.
(c) For the Markov chain of (b) compute $\lim _{n \rightarrow \infty} P^{n}(6, i)$ and $\lim _{n \rightarrow \infty} P^{n}(5, i)$ for all $i \in S$.

Problem 2 (a) Suppose X_{n} is a Markov chain with state space S and $f: S \rightarrow T$ is a map from S to some set T. Show that $Y_{n}=f\left(X_{n}\right)$ is a Markov chain on the state space $S^{\prime}=\{f(j) ; j \in S\}$ if f is one-to-one. What if f is not one-to-one?
(b) Suppose X_{n} is an irreducible Markov chain on the finite state space S with stationary distribution π. Let $Y_{n} \equiv\left(X_{n}, X_{n+1}\right)$. Show that Y_{n} is a Markov chain. What is the state space for Y_{n} ? What are the transition probabilities? What is the stationary distribution?
(c) Suppose X_{n} and Y_{n} are two independent irreducible Markov chains with finite state space S and T respectively, transition probabilities P and Q respectively, and stationary distribution π and ν respectively. Show that $Z_{n}=\left(X_{n}, Y_{n}\right)$ is a Markov chain, find the transition probabilities, and the stationary distribution.
(d) A neighborhood has 2 bars, called 1 and 2. B.J. visits one of two bars every night, starting in bar 1 according to the Markov chain with transition matrix

$$
P=\left(\begin{array}{ll}
.8 & .2 \\
.2 & .8
\end{array}\right)
$$

while C.J. visits one of two same bars every night, starting in bar 2 according to the Markov chain with transition matrix

$$
P=\left(\begin{array}{ll}
.3 & .7 \\
.7 & .3
\end{array}\right)
$$

Find the expected time until they are in the same bar and the probability they meet in bar 2.
Hint: Use (c).

Problem 3 Consider a sequence of random numbers $U_{1}, U_{2}, U_{3}, \cdots$ (i.e. uniform random variables on $[0,1])$. Let N be the first one that is greater than its immediate predecessor, i.e.,

$$
N=\min \left\{n ; n \geq 2, U_{n}>U_{n-1}\right\}
$$

We will also need later the random variable

$$
M=\min \left\{n ; n \geq 2,1-U_{n}>1-U_{n-1}\right\}=\min \left\{n ; n \geq 2, U_{n}<U_{n-1}\right\}
$$

which has the same distribution as N.
(a) Show that $P\{N>n\}=\frac{1}{n!}$ and deduce from this that $E[N]=e\left(=\sum_{n=0}^{\infty} \frac{1}{n!}\right)$.
(b) Using the results of (a) compute the variance of the Monte-Carlo algorithm

$$
I_{L}=\frac{1}{L} \sum_{j=1}^{L} N_{j}
$$

which is an estimator for the number e.
(c) Observe that with probability $1 / 2$ (i.e., if $U_{1}>U_{2}$), $N=2$, and that with probability $1 / 2$, $N=2+K$ where where K is the number of additional random numbers necessary to be observed until one is observed to be greater than its prededessor, given that $U_{2}<U_{1}$. Formally let K be the random variable which takes the value $1,2,3, \cdots$ and whose p.d.f is given by

$$
P\{K=j\}=P\left\{N=2+j \mid U_{1}>U_{2}\right\}
$$

Use this relation to compute $E[K]$ and $\operatorname{Var}(K)$.
(d) If one uses one sequence of random numbers to generate both N and M then N and M are not independent (for example one of them is always 2). Use (c) to compute in this case $\operatorname{Var}(N+M)$.
(e) Formulate a Monte-Carlo algorithm to estimate e using M and N and shows that it has smaller variance than the one in (b).

