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Chapter 1

Random variables and Monte-Carlo
method

1.1 Review of probability

In this section we briefly review some basic terminology of probability, see any elemen-
tary probability book for reference.

Any real-valued random variable X is described by its cumulative distribution
function (abbreviated c.d.f) of X, i.e., the function FX : R→ [0, 1] defined by

FX(x) = P{X ≤ x} .

If there exists a function f : R → [0,∞) such that FX(x) =
∫ x
−∞ fX(y) dy then X is

said to be continuous with probability density function (abbreviated p.d.f) fX .
By the fundamental theorem of calculus the p.d.f of X is obtained from the c.d.f of X
by differentiating, i.e.,

fX(x) = F ′X(x) .

On the other hand if X takes values in the set of integers, or more generally in
some countable or finite subset S of the real numbers, then the random variable X and
its c.d.f. are completely determined by its probability distribution function (also
abbreviated p.d.f), i.e., by p : S → [0, 1] where

p(i) = P{X = i} , i ∈ S .

In this case X is called a discrete random variable.
The p.d.f. f of a continuous random variable satisfies

∫∞
−∞ f(x) dx = 1 and the p.d.f

of a discrete random variable satisfies
∑

i∈S pi = 1. Either the c.d.f or p.d.f describes
the distribution of X and we compute the probability of any event A ⊂ R by

P{X ∈ A} =

{ ∫
A
fX(x) dx if X is continuous ,∑
i∈A p(i) dx if X is discrete .
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Let X = (X1, · · · , Xd) be a random vector, i.e., X1, · · ·Xd are a collection of d
real-valued random variables with a joint distribution. Often the joint distribution can
be described by the multi-parameter analogue of the p.d.f. For example if there is a
function fX : Rd → [0,∞) such that

P (X ∈ A) =

∫
· · ·
∫
A

fX(x1, · · · , xd)dx1 · · · dxd

then X is called a continuous random vector with p.d.f fX. Similarly a discrete random
vector X taking values i = (i1, · · · , id) is described by

p(i1, · · · , id) = P{X1 = i1, · · ·Xd = id} .

A collection of random variables X1, · · · , Xd are independent if the joint p.d.f satisfies

fX(x) = fX1(x1) · · · fXd(xd) , continuous case

pX(i) = pX1(i1) · · · pXd(id) , discrete case (1.1)

If X is a random vector and g : Rd → R is a function then Y = g(X) is a real random
variable. The mean or expectation of a real random variable X is defined by

E[X] =

{ ∫∞
−∞ xfX(x) dx if X is continuous∑
i∈S i pX(i) if X is discrete

More generally if Y = g(X) then

E[Y ] = E[g(X)] =

{ ∫
Rd g(x)fX(x) dx if X is continuous∑

i g(i) px(i) if X is discrete

The variance of a random variable X, denoted by var(X), is given by

var(X) = E
[
(X − E[X])2] = E[X2]− E[X]2 .

The mean of a random variable X measures the average value of X while its variance is
a measure of the spread of the distribution of X. Also commonly used is the standard
deviation sd(X) =

√
var(X).

Let X and Y be two random variables then we have

E[X + Y ] = E[X] + E[Y ] .

For the variance a simple computation shows that

var(X + Y ) = var(X) + 2cov(X, Y ) + var(Y )

where cov(X, Y ) is the covariance of X and Y and is defined by

cov(X, Y ) = E [(X − E[X])(Y − E[Y ])] .
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In particular if X and Y are independent then E[XY ] = E[X]E[Y ] and so cov(X, Y ) =
0 and thus var(X1 +X2) = var(X1) + var(X2).

Another important and useful object is the moment generating function (ab-
breviated m.g.f.) of a random variable X and is given by

MX(t) = E
[
etX
]
.

Whenever we use a m.g.f we will always assume that MX(t) is finite, at least in an
interval around 0. Note that this is not always the case. If the moment generating
function of X is known then one can compute all moments of X, E[Xn], by repeated
differentiation of the function MX(t) with respect to t. The nth derivative of Mx(t) is
given by

M (n)
x (t) = E

[
XnetX

]
and therefore

E[Xn] = M (n)(0) .

In particular E[X] = M ′
X(0) and var(X) = M ′′

X(0) − (M ′
X(0))2. It is often very

convenient to compute the mean and variance of X using these formulas (see the
examples below).

An important fact is the following (its proof is not easy!)

Theorem 1.1.1 Let X and Y be two random variables and suppose that MX(t) =
MY (t) for all t ∈ (−δ, δ) then X and Y have the same distribution.

Another easy and important property of the m.g.f is

Proposition 1.1.2 If X and Y are independent random variable then the m.g.f of
X + Y satisfies

MX+Y (t) = MX(t)MY (t) ,

i.e., the m.g.f of a sum of independent random variable is the product of the m.g.f.

Proof: We have

E
[
et(X+Y )

]
= E

[
etXetY )

]
= E

[
etX
]
E
[
etY )

]
,

since etX and etY are independent.
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1.2 Some common random variables

We recall some important distributions together with their basic properties. The fol-
lowing facts are useful to remember.

Proposition 1.2.1 We have

1. Suppose X is a continuous random variable with p.d.f f(x). For any real number
a the p.d.f of X + a is f(x− a).

2. Suppose X is a continuous random variable with p.d.f f(x). For any non zero
real number b the p.d.f of bX is 1

|b|f
(
x
b

)
.

3. If X is a random variable, then for any real number a and b we have MbX+a(t) =
eatMX(bt).

Proof: The c.d.f of X + a is

FX+a(x) = P (X + a ≤ x) = P (X ≤ x− a) = FX(x− a) .

Differentiating with respect to x gives

fX+a(x) = F ′X+a(x) = fX(x− a) .

This shows (i).
To prove (ii) one proceeds similarly. For b > 0

FbX(x) = P (bX ≤ x) = P (X ≤ x/b) = FX(x/b) .

Differentiating gives fbX(x) = 1
b
f
(
x
b

)
. The case b < 0 is left to the reader.

To prove (iii) note that

MbX+a(t) = E
[
et(bX+a)

]
= etaE

[
etbX

]
= etaMX(bt) .

We recall the basic random variables and their properties.

1) Uniform Random Variable
Consider real numbers a < b. The uniform random variable on [a, b] is the
continuous random variable with p.d.f

f(x) =

{
1
b−a if a ≤ x ≤ b

0 otherwise
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The moment generating function is

E
[
etX
]

=

∫ b

a

etx dx =
etb − eta

t(b− a)
.

and the mean and variance are

E[X] =
b− a

2
, var(X) =

(b− a)2

12
.

We write X = U[a,b] to denote this random variable.

2) Normal Random Variable
Let µ be a real number and σ be a positive number. The normal random variable
with mean µ and variance σ2 is the continuous random variable with p.d.f

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The moment generating function is (see below for a proof)

E
[
etX
]

=
1

σ
√

2π

∫ ∞
−∞

etxe−
(x−µ)2

2σ2 dx = eµt+
σ2t2

2 . (1.2)

and the mean and variance are, indeed,

E[X] = µ , var(X) = σ2 .

We write X = Nµ,σ2 to denote this random variable. The standard normal random
variable is the normal random variable with µ = 0 and σ = 1, i.e., N0,1

The normal random variable has the following property

X = N0,1 if and only if σX + µ = Nµ,σ2

To see this one applies Proposition 1.2.1 (i) and (ii) and this tells us that the density
of σX + µ is 1

σ
f(x−µ

σ
).

To show the formula for the moment generating function we consider first X = N0,1.
Then by completing the square we have

MX(t) =
1√
2π

∫ ∞
−∞

etxe−
x2

2 dx =
1√
2π

∫ ∞
−∞

e
t2

2 e−
(x−t)2

2 dx

= e
t2

2
1√
2π

∫ ∞
−∞

e−
(x−t)2

2 dx = e
t2

2
1√
2π

∫ ∞
−∞

e−
y2

2 dy = e
t2

2 (1.3)

This proves the formula for N(0, 1). Since N(µ, σ2) = σN0,1 + µ, by Proposition 1.2.1,

(iii) the moment generating function of Nµ,σ2 is etµe
σ2t2

2 as claimed.
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3) Exponential Random Variable
Let λ be a positive number. The exponential random variable with parameter
λ is the continuous random variable with p.d.f

f(x) =

{
λe−λx if x > 0
0 otherwise

.

The moment generating function is

E
[
etX
]

= λ

∫ ∞
0

etxe−λx =

{
λ
λ−t if λ < t

+∞ otherwise

and the mean and variance are

E[X] =
1

λ
, var(X) =

1

λ2
.

We write X = Expλ to denote this random variable. This random variable will play
an important role in the construction of continuous-time Markov chains. It often has
the interpretation of a waiting time until the occurrence of an event.

4) Gamma Random Variable
Let n and λ be positive numbers. The gamma random variable with parameters
n and λ is the continuous random variable with p.d.f

f(x) =

{
λe−λx (λx)n−1

(n−1)!
if x > 0

0 otherwise
.

The moment generating function is

E
[
etX
]

= λ

∫ ∞
0

etxλe−λx
(λx)n−1

(n− 1)!
=

{ (
λ
λ−t

)n
if t < λ

+∞ otherwise
.

and the mean and variance are

E[X] =
n

λ
, var(X) =

n

λ2
.

We write X = Γn,λ to denote this random variable.
To show the formula for the m.g.f note that for any α > 0∫ ∞

0

e−αx dx =
1

α
.

and differentiating repeatedly w.r.t. α gives the formula∫ ∞
0

e−αxxn−1 dx =
(n− 1)!

αn
.
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Note that Γ1,λ = Expλ. Also the m.g.f of Γn,λ is the m.g.f of Expλ to the nth

power. Using Theorem 1.1.1 and Proposition 1.1.2 we conclude that if X1, · · · , Xn are n
independent exponential random variables with parameters λ then X1+· · ·+Xn = Γn,λ.

5) Bernoulli Random Variable
A Bernoulli random variable models the toss a (possibly unfair coin), or more generally
any random experiment with exactly two outcomes. Let p be a number with 0 ≤ p ≤ 1.
The Bernoulli random variable with parameter p is the discrete random variable
taking value in {0, 1} with

p(0) = 1− p , p(1) = p

The moment generating function is

E
[
etX
]

= 1− p+ pet ,

and the mean and the variance are

E[X] = p , var(X) = p(1− p) .

A typical example where Bernoulli random variable occur is the following. Let Y be any
random variable, let A be any event, the indicator random variable 1A(Y ) is defined
by

1A(Y ) =

{
1 if Y ∈ A
0 if Y /∈ A

Then 1A(Y ) is a Bernoulli random variable with p = P{Y ∈ A}.
6) Binomial Random Variable
Consider an experiment which has exactly two outcomes 0 or 1 and is repeated n times,
each time independently of each other (i.e., n independent trials). The binomial
random variable is the random variable which counts the number of 1 obtained during
the n trials. Let p be a number with 0 ≤ p ≤ 1 and let n be a positive integer. The
Bernoulli random variable with parameters n and p is the random variable
which counts the number of 1 occurring in the n outcomes. The p.d.f is

p(i) =

(
n

i

)
pi(1− p)n−i , i = 0, 1, · · · , n .

The moment generating function is

E
[
etX
]

= ((1− p) + pet)n ,

and the mean and the variance are

E[X] = np , var(X) = np(1− p) .
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We write X = Bn, p to denote this random variable.
The formula for the m.g.f can be obtained directly using the binomial theorem, or

simply by noting that by construction Bn,p is a sum of n independent Bernoulli random
variables.

7) Geometric Random Variable
Consider an experiment which has exactly two outcomes 0 or 1 and is repeated as many
times as needed until a 1 occurs. The geometric random describes the probability that
the first 1 occurs at exactly the nth trial. Let p be a number with 0 ≤ p ≤ 1 and let n
be a positive integer. The geometric random variable with parameter p is the
random variable with p.d.f

p(n) = (1− p)n−1p , n = 1, 2, 3, · · ·

The moment generating function is

E
[
etX
]

=
∞∑
n=1

etn(1− p)n−1p =

{
pet

1−et(1−p) if et(1− p) < 1

0 otherwise
,

The mean and the variance are

E[X] =
1

p
, var(X) =

1− p
p2

.

We write X = Geop to denote this random variable.

8) Poisson Random Variable
Let λ be a positive number. The Poisson random variable with parameter λ is
the discrete random variable which takes values in {0, 1, 2, · · · } and with p.d.f

p(n) = e−λ
λn

n!
n = 0, 1, 2, · · · .

The moment generating function is

E
[
etX
]

=
∞∑
n=0

etn
λn

n!
e−λ = eλ(et−1) .

The mean and the variance are

E[X] = λ , var(X) = λ .

We write X = Poissλ to denote this random variable.
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1.3 Simulation of random variables

In this section we discuss a few techniques to simulate a given random variable on
a computer. The first step which is built-in in any computer is the simulation of a
random number, i.e., the simulation of a uniform random variable U([0, 1]), rounded
off to the nearest 1

10n
.

In principle this is not difficult: take ten slips of paper numbered 0, 1, · · · , 9, place
them in a hat and select successively n slips, with replacement, from the hat. The
sequence of digits obtained (with a decimal point in front) is the value of a uniform
random variable rounded off to the nearest 1

10n
. In pre-computer times, tables of

random numbers were produced in that way and still can be found. This is of course
not the way a actual computer generates a random number. A computer will usually
generates a random number by using a deterministic algorithm which produce a pseudo
random number which ”looks like” a random number For example choose positive
integers a, c and m and set

Xn+1 = (aXn + c) mod(m) .

The number Xn is either 0, 1, · · · ,m − 1 and the quantity Xn/m is taken to be an
approximation of a uniform random variable. One can show that for suitable a, C
and m this is a good approximation. This algorithm is just one of many possibles and
used in practice. The issue of actually generating a good random number is a nice,
interesting, and classical problem in computer science. For our purpose we will simply
content ourselves with assuming that there is a ”black box” in your computer which
generates U([0, 1]) in a satisfying manner.

We start with a very easy example, namely simulating a discrete random variable
X.

Algorithm 1.3.1 (Discrete random variable) Let X be a discrete random variable
taking the values x1, x2, · · · with p.d.f. p(j) = P{X = xj}. To simulate X,

• Generate a random number U = U([0, 1]).

• Set

X =



x1 if U < p(1)
x2 if p(1) < U < p(1) + p(2)
...

...
xn if p(1) + · · ·+ p(n− 1) < U < p(1) + · · · p(n)
...

...

Then X has the desired distribution.

We discuss next two general methods simulating continuous random variable. The
first is called the inverse transformation method and is based on the following
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Proposition 1.3.2 Let U = U([0, 1]) and let F = FX be the c.d.f of the continuous
random variable X. Then

X = F−1(U) ,

and also
X = F−1(1− U) .

Proof: By definition the c.d.f of the random variable X is a continuous increasing
function of F , therefore the inverse function F−1 is well-defined and we have

P{F−1(U) ≤ a} = P{U ≤ F (a)} = F (a) .

and this shows that the c.d.f of F−1(U) is F and thus X = F−1(U). To prove the
second formula simply note that U and 1− U have the same distribution.

So we obtain

Algorithm 1.3.3 (Inversion method for continuous random variable) Let X
be a random variable with c.d.f F = FX . To simulate X

• Step 1 Generate a random number U = U([0, 1]).

• Step 2 Set X = F−1(U).

Example 1.3.4 (Simulating an exponential random variable) If X = Expλ
then its c.d.f if

F (x) = 1− e−λx .

The inverse function F−1 is given by

1− e−λx = u iffu = −1

λ
log(1− u) .

Therefore we have F−1(u) = − 1
λ

log(1− u). So if U = U([0, 1]) then

Expλ = −1

λ
log(1− U) = −1

λ
log(U) .

The inversion method is most straightforward when there is an explicit formula
for the inverse function F−1. In many examples however a such a nice formula is not
available. Possible remedies to that situation is to solve F (X) = U numerically for
example by Newton method.

Another method for simulating a continuous random variable is the rejection
method. Suppose we have a method to simulate a random variable with p.d.f g(x) and
that we want to simulate the random variable with p.d.f f(x). The following algorithm
is due to Von Neumann.
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Algorithm 1.3.5 (Rejection method for continuous random variable). Let X
be a random variable with p.d.f f(x) and let Y be a random variable with p.d.f g(x).
Furthermore assume that there exists a constant C such that

f(y)

g(y)
≤ C , for all y .

To simulate X

• Step 1 Simulate Y with density g.

• Step 2 Simulate a random number U .

• Step 3 If

U ≤ f(Y )

g(Y )C

set X = Y . Otherwise return to Step 1.

That the algorithm does the job is the object of the following proposition.

Proposition 1.3.6 The random variable X generated by the rejection method has p.d.f
f(x). If N is the number of times the algorithm is run until one value is accepted then
N is a geometric random variable with parameter 1

C
.

Proof: To obtain a value of X we will need in general to iterate the algorithm a random
number of times We generate random variables Y1, · · · , YN until YN is accepted and
then set X = YN . We need to verify that the p.d.f of X is actually f(x).

Then we have

P{X ≤ x} = P{YN ≤ x} = P

{
Y ≤ x |U ≤ f(Y )

Cg(Y )

}

=
P
{
Y ≤ x , U ≤ f(Y )

Cg(Y )

}
P
{
U ≤ f(Y )

Cg(Y )

}
=

∫∞
−∞ P

{
Y ≤ x , U ≤ f(Y )

Cg(Y )
|Y = y

}
g(y) dy

P
{
U ≤ f(Y )

Cg(Y )

}
=

∫ x
−∞ P

(
U ≤ f(y)

Cg(y)

)
g(y) dy

P
(
U ≤ f(Y )

Cg(Y )

)
=

∫ x
−∞

f(y)
Cg(y)

g(y) dy

P
(
U ≤ f(Y )

Cg(Y )

) =

∫ x
−∞ f(y) dy

CP
(
U ≤ f(Y )

Cg(Y )

) .
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If we let x→∞ we obtain that CP
(
U ≤ f(Y )

Cg(Y )

)
= 1 and thus

P (X ≤ x) =

∫ x

−∞
f(x) dx .

and this shows that X has p.d.f f(x).
In addition the above argument that at each iteration of the algorithm the value

for X is accepted with probability

P

(
U ≤ f(Y )

Cg(Y )

)
=

1

C

independently of the other iterations. Therefore the number of iterations needed is
Geom( 1

C
) with mean C.

In order to decide whether this method is efficient of not, we need to ensure that
rejections occur with small probability. Therefore the ability to choose a reasonably
small C will ensure that the method is efficient.

Example 1.3.7 Let X be the random variable with p.d.f

f(x) = 20(1− x)3 , 0 < x < 1 .

Since the p.d.f. is concentrated on [0, 1] let us take

g(x) = 1 0 < x < 1 .

To determine C such that f(x)/g(x) ≤ C we need to maximize the function h(x) ≡
f(x)/g(x) = 20x(1 − x)3. Differentiating gives h′(x) = 20 ((1− x)3 − 3x(1− x)2) and
thus the maximum is attained at x = 1/4. Thus

f(x)

g(x)
≤ 20

1

4

(
3

4

)3

=
135

64
≡ C .

We obtain
f(x)

Cg(x)
=

256

27
x(1− x)3

and the rejection method is

• Step 1 Generate random numbers U1 and U2.

• Step 2 If U2 ≤ 256
27
U1(1−U1)3, stop and set X = U1. Otherwise return to step 1.

The average number of accepted iterations is 135/64.
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Example 1.3.8 (Simulating a normal random variable) Note first that to sim-
ulate a normal random variable X = Nµ,σ2 it is enough to simulate Nµ,σ2 and then set
X = σN0,1 + µ.

Let us first consider the random variable Z whose density is

f(x) =
2√
2π
e−

x2

2 , 0 ≤ x ≤ ∞ .

One can think of Z as the absolute value of N(0, 1).
We simulate Z by using the rejection method with

g(x) = e−x 0, x <∞ ,

i.e., Y = Exp(1). To find C we note that

f(x)

g(x)
=

√
2e

π
e−

(x−1)2

2 ≤ 2e

π
≡ C .

One generates Z using the rejection method. To generate X = N0,1 from Z one
generate a discrete random variable S with takes value +1 and −1 with probability 1

2

and then set X = SZ. The random variable S is S = 2B1, 1
2
− 1.

• Step 1 Generate a random numbers U , an exponential random variable Y and
a Bernoulli random variable B.

• Step 2 If U ≤ exp− (Y−1)2

2
set Z = Y and X = (2B − 1)Z

For particular random variables many special techniques have been devised. We
give here some examples.

Example 1.3.9 (Simulating a geometric random variable) The c.d.f of the ge-
ometric random variable X = Geomp is given by

F (n) = P (X ≤ n) = 1− P (X > n) = 1−
∞∑

k=n+1

(1− p)n−1p = 1− (1− p)n

The exponential random variable Y = Expλ has c.d.f 1− e−λx.
For any positive real number let dxe denote the smallest integer greater than or

equal to x, e.g. d3.72e = 4. Then we claim that if Y = Expλ then

dY e = Geomp with p = 1− e−λ .

Indeed we have
P (dY e ≤ n) = P (Y ≤ n) = 1− e−λn .

Thus we obtain
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Algorithm 1.3.10 (Geometric random variable)

• Step 1 Generate a random number U .

• Step 2 Set X = d log(U)
log(1−p)e

Then X = Geomp.

Example 1.3.11 (Simulating the Gamma random variable)Using the fact that
Gamma(n, λ) is a sum of n independent Exp(λ) one immediately obtain

Algorithm 1.3.12 (Gamma random variable)

• Step 1 Generate n random number U1, · · · , Un.

• Step 2 Set Xi = − 1
λ

log(Ui)

• Step 3 Set X = X1 + · · ·+Xn.

Then X = Γn,p.

Finally we give an elegant algorithm which generates 2 independent normal random
variables.

Example 1.3.13 (Simulating a normal random variable: Box-Müller)We show
a simple way to generate 2 independent standard normal random variables X and Y .
The joint p.d.f. of X and Y is given by

f(x, y) =
1

2π
e−

(x2+y2)
2 .

Let us change into polar coordinates (r, θ) with r2 = x2 + y2 and tan(θ) = y/x. The
change of variables formula gives

f(x, y) dxdy = re−
r2

2 dr
1

2π
dθ .

Consider further the change of variables set s = r2 so that

f(x, y) dxdy =
1

2
e−

s
2 ds

1

2π
dθ .

The right-hand side is to be the joint p.d.f of the two independent random variables
S = Exp1/2 and Θ = U[0,2π].

Therefore we obtain

Algorithm 1.3.14 (Standard normal random variable)
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• Step 1 Generate two random number U1 and U2

• Step 2 Set

X =
√
−2 log(U1) cos(2πU2)

Y =
√
−2 log(U1) sin(2πU2) (1.4)

(1.5)

Then X and Y are 2 independent N0,1.

1.4 Markov, Chebyshev, and Chernov

We recall simple techniques for bounding the tail distribution of a random variable,
i.e., bounding the probability that the random variable takes value far from the its
mean.

Our first inequality, called Markov’s inequality simply assumes that we know
the mean of X.

Proposition 1.4.1 (Markov’s Inequality) Let X be a random variable which as-
sumes only nonnegative values, i.e. P (X ≥ 0) = 1. Then for any a > 0 we have

P (X ≥ a) ≤ E[X]

a
.

Proof: For a > 0 let us define the random variable

Ia =

{
1 if X ≥ a
0 otherwise

.

Note that, since X ≥ 0 we have

Ia ≤
X

a
(1.6)

and that since Ia is a binomial random variable

E[Ia] = P (X ≥ a) .

Taking expectations in the inequality (1.6) gives

P (X ≥ a) = E[Ia] ≤ E

[
X

a

]
=

E[X]

a
.
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Example 1.4.2 (Flipping coins) Let us flip a fair coin n times and let us define the
random variables Xi, i = 1, 2, · · · , n by

Xi =

{
1 if the ith coin flip is head
0 otherwise

.

Then each Xi is a Bernoulli random variable and Sn = X1 +· · ·Xn = Bn, 1
2

is a binomial
random variable.

Let us the Markov inequality to estimate the probability that at least 75% of the
n coin flips are head. Since E[Sn] = n

2
the markov’s inequality tells us that

P (Sn ≥
3n

4
) ≤ E[Sn]

3n/4
=

n/2

3n/4
=

2

3
.

As we will see later this is an extremely lousy bound but note that we obtained it using
only the value of the mean and nothing else.

Our next inequality, which we can derive from Markov’s inequality, involves now
the variance of X. This is called Chebyshev’s inequality.

Proposition 1.4.3 (Chebyshev’s Inequality) Let X be a random variable with
E[X] = µ and V ar(X) = σ2. Then for any a > 0 we have

P (|X − µ| ≥ a) ≤ σ2

a2
.

Proof: Observe first that

P (|X − µ| ≥ a) = P ((X − µ)2 ≥ a2) .

Since (X−µ)2 is a nonnegative random variable we can apply Markov’s inequality and
obtain

P (|X − µ| ≥ a) ≤ E[(X − µ)2]

a2
=

var(X)

a2
.

Let us apply this result to our coin flipping example

Example 1.4.4 (Flipping coins, cont’d) Since Sn has mean n/2 and variance n/4
Chebyshev’s inequality tells us that

P

(
Sn ≥

3n

4

)
= P

(
Sn −

n

2
≥ n

4

)
≤ P

(∣∣∣Sn − n

2

∣∣∣ ≥ n

4

)
≤ n/4

(n/4)2
=

4

n
. (1.7)
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This is significantly better that the bound provided by Markov’s inequality! Note also
that we can do a bit better by noting that the distribution of Sn is symmetric around
its mean and thus we can replace 4/n by 2/n.

We can do better if we know all moments of the random variable X, for example
if we know the moment generating function MX(t) of the random variable X. The
inequalities in the following theorems are usually called Chernov bounds or expo-
nential Markov inequality.

Proposition 1.4.5 (Chernov’s bounds) Let X be a random variable with moment
generating function MX(t) = E[etX ].

• For any a and any t > 0 we have

P (X ≥ a) ≤ min
t≥0

E[etX ]

eta
.

• For any a and any t < 0 we have

P (X ≤ a) ≤ min
t<0

E[etX ]

eta
.

Proof: This follows from Markov inequality. For t > 0 we have

P (X ≥ a) = P (etX > eta) ≤ E[etX ]

eta
.

Since t > 0 is arbitrary we obtain

P (X ≥ a) ≤ min
t≥0

E[etX ]

eta
.

Similarly for t < 0 we have

P (X ≤ a) = P (etX > eta) ≤ E[etX ]

eta
,

and thus

P (X ≥ a) ≤ min
t≤0

E[etX ]

eta
.

Let us consider again our flipping coin examples
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Example 1.4.6 (Flipping coins, cont’d) Since Sn is a binomial Bn, 1
2

random vari-

able its moment generating function is given by MSn(t) = (1
2

+ 1
2
et)n. To estimate

P (Sn ≥ 3n/4) we apply Chernov bound with t > 0 and obtain

P

(
Sn ≥

3n

4

)
≤

(1
2

+ 1
2
et)n

e
3nt
4

=

(
1

2
e−

3t
4 +

1

2
e
t
4

)n
.

To find the optimal bound we minimize the function f(t) = 1
2
e−

3t
4 + 1

2
e
t
4 . The mimimum

is at t = log 3 and

f(log(3)) =
1

2
(e−

3
4

log(3) + e
1
4

log(3)) =
1

2
e

1
4

log(3)(e− log 3 + 1) =
2

3
3

1
4 ' 0.877

and thus we obtain

P

(
Sn ≥

3n

4

)
≤ 0.877n .

This is course much better than 2/n. For n = 100 Chebyshev inequality tells us that
the probability to obtain 75 heads is not bigger than 0.02 while the Chernov bounds
tells us that it is actually not greater than 2.09× 10−6.

1.5 Limit theorems

In this section we study the behavior, for large n of a sum of independent iden-
tically distributed variables ( abbreviated i.i.d.). Let X1, X2, · · · be a sequence
of independent random variables where all Xi’s have the same distribution. Then we
denote by Sn the sum

Sn = X1 + · · ·+Xn .

The random variable Sn
n

is called the empirical average. You can imagine that Xi

represent the output of some experiment and then Sn/n is the random variable obtained
by averaging the outcomes of n successive experiments, performed independently of
each other.

Under suitable conditions Sn will exhibit a universal behavior which does not de-
pend on all the details of the distribution of the Xi’s but only on a few of its charcter-
istics, like the mean or the variance.

The first result is the weak law of large numbers. It tells us that if we perform
a large number of independent trials the average value of our trials is close to the mean
with probability close to 1. The proof is not very difficult, but it is a very important
result!

Theorem 1.5.1 (The weak Law of Large Numbers) Let X1, X2, · · · be a sequence
of independent identically distributed random variables with mean µ and variance σ2.
Let

Sn = X1 + · · ·+Xn .
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Then for any ε > 0

lim
n→∞

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε

)
= 0 .

Proof: : By the linearity of expectation we have

E

[
Sn
n

]
=

1

n
E[X1 + · · ·+Xn] =

nµ

n
= µ .

i.e. the mean of Sn/n is µ. Furthermore by the independence of X1, · · · , Xn we have

var

(
Sn
n

)
=

1

n2
var(Sn) =

1

n2
var(X1 + · · ·+Xn) =

nσ2

n2
=

σ2

n
.

Applying Chebyshev’s inequality we obtain

P

{∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε

}
≤

var
(
Sn
n

)
ε2

=
σ2

ε2
1

n
,

and for any ε > 0 the right hand sides goes to 0 as n goes to ∞.

The weak law of large numbers tells us that if we perform a large number of inde-
pendent trials then the average value of our trials is close to the mean with probability
close to 1. The proof is not very difficult, but it is a very important result. There
is a strengthening of the weak law of large numbers called the strong law of large
numbers

Theorem 1.5.2 (Strong Law of Large Numbers) Let X1, X2, · · · be a sequence of
independent identically distributed random variables with mean µ. Then Sn/n converges
to µ with probability 1, i.e.,

P

{
lim
n→∞

Sn
n

= µ

}
= 1 .

The strong law of large numbers is useful in many respects. Imagine for example
that you are simulating a sequence of i.i.d random variables and that you are trying to
determine the mean µ. The strong law of large numbers tells you that, in principle, it
is enough to do 1 simulation for a sufficiently long time to produce the mean. The weak
law of large numbers tells you something a little weaker: with very large probability
you will obtain the mean. Based on the weak law of large numbers only you might
want to repeat your experiment a number of times to make sure you were not unlucky
and hit an event of small probability. The strong law of large numbers tells you not to
worry.
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Proof: The proof of the strong law of large numbers use more advanced tools that we
are willing to use here.

Finally we discuss the central limit theorem. The law of large number and
cramer’s theorem deals with large fluctuations for Sn/n, that is with the probability
that Sn/n is at a distance away from the mean which is of order 1. In particular these
fluctuations vanish when n → ∞. For example we can ask if there are non trivial
fluctuations of order 1

nα
for some α > 0. One can easily figure out which power α has

to be chosen. Since E[Sn] = nµ var(Sn) = nσ2 we see that the ratio

Sn − nµ√
nσ

has mean 0 and variance 1 for all n. This means that fluctuation of order 1/
√
n may

be non trivial. The Central limit theorem shows not the fluctuation of order 1/
√
n of

Sn are in fact universal: for large n they behave like a normal random variable, that is

Sn − nµ√
nσ

∼ N(0, 1) ,

or
Sn
n
∼ µ+

1√
n
N(0, σ2) .

What we exactly mean by ∼ is given in

Theorem 1.5.3 (Central Limit Theorem) Let X1, X2, · · · be a sequence of inde-
pendent identically distributed random variables with mean µ and variance σ2 > 0.
Then for any −∞ ≤ a ≤ b ≤ ∞ we have

lim
n→∞

P

(
a ≤ Sn − nµ√

nσ
≤ b

)
=

1√
2π

∫ b

a

e−
x2

2 dx .

Proof: We will not give the complete proof here but we will prove that the moment
generating function of Sn−nµ√

nσ
converges to the moment generating of N(0, 1) as n→∞.

Let by X∗i = Xi−µ
σ

then E[X∗i ] = 0 and var(X∗i ) = 1. If S∗n = X∗1 + · · ·X∗n then

Sn − nµ√
nσ

=
S∗n√
n
.

Therefore without loss of generality we can assume that µ = 0 and σ = 1.
Let M(t) = MXi(t) denote the moment generating function of the R.V. Xi then we

have M(0) = 1, M ′(0) = E[Xi] = µ = 0 and M ′′(0) = var(X) = 1. Using independence
we have

M Sn√
n
(t) = E

[
e
t Sn√

n

]
= E

[
e

t√
n

(X1+···Xn)
]

=

(
M

(
t√
n

))n
.
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Recall that the m.g.f. of N(0, 1) is given by et
2/2, so we need to show that M Sn√

n
(t)→

et
2/2 as n→∞. Let

u(t) = logM(t) , un(t) = logM Sn√
n
(t)

and we will show that un(t)→ t2/2 as n→∞. We have

un(t) = log φn(t) = n log φ

(
t√
n

)
.

Note that

u(0) = logM(0) = 0

u′(0) =
M ′(0)

M(0)
= µ = 0

u′′(0) =
M ′′(0)M(0)−M ′(0)2

M(0)2
= σ2 = 1 .

By using L’Hospital rule twice we obtain

lim
n→∞

un(t) = lim
s→∞

φ(t/
√
s)

s−1

= lim
s→∞

φ′(t/
√
s)t

2s−1/2

= lim
s→∞

φ′′(t/
√
s)
t2

2
=

t2

2
.

Therefore limn→∞ φn(t) = et
2
2. One can show with a non-negligible amount of work

that this implies that the c.d.f of Sn/
√
n converges to the c.d.f of N(0, 1).

1.6 Large deviation bounds

In this section we discuss a quantitative refinement of the weak law of large numbers.
A look at the proof shows that the probability to observe a deviation from the mean
is bounded by a quantity of order 1/n and that we have used only the fact that the
variance is finite. One would expect that if we know that higher moments E[Xn] are
finite then sharper estimates will hold.

For this we need some preparation. Let X be a random variable with m.g.f MX(t) =
E[etX ]. It will be useful to consider the logarithm of M(t) which we denote by u

u(t) = uX(t) = logMX(t) = logE[etX ]
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and uX(t) to as the logarithmic moment generating function of the random
variable X.

Recall that a function f(t) is called convex if for any 0 ≤ α ≤ 1 we have

f(αt1 + (1− α)t2) ≤ αf(t1) + (1− α)f(t2) .

Graphically it means that for the graph t1 ≤ t ≤ t2 the graph of f(t) lies below the
line passing through the points (t1, f(t1)) and (t2, f(t2)). From calculus we known that
f is convex iff f ′(t) is increasing iff f ′′(t) is nonnegative (provided the derivatives do
exist).

Lemma 1.6.1 The logarithmic moment generating function u(t) = logM(t) is a con-
vex function which satisfies

u(0) = 0 , u′(0) = µ , u′′(0) = σ2

Proof: We will prove the convexity in two different ways. The first proof use Hölder
inequality which states that if 1/p + 1/q = 1 then E[XY ] ≤ E[Xp]1/pE[Y q]1/q. We
choose p = 1

α
and q = 1

1−α and obtain

E
[
e(αt1+(1−α)t2)X

]
= E

[(
et1X

)α (
et2X

)(1−α)
]
≤ E

[
et1X

]α
E
[
et2X

](1−α)
.

Taking logarithms proves the convexity.
For our second proof note that

u′(t) =
M ′(t)

M(t)

u′′(t) =
M ′′(t)M(t)−M ′(t)2

M(t)2
.

If t = 0 we find that

u′(0) =
M ′(0)

φ(0)
= µ

u′′(0) =
M ′′(0)M(0)−M ′(0)2

M(0)2
= σ2 .

To prove the convexity of u we need to show that u′′(t) ≥ 0 for any t. For given t
let us define the random variable Yt to be the random variable with p.d.f

fX(x)etx

M(t)
,
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if X is a continuous random variable (argue similarly if X is a discrete R.V.). Then
one verifies that

E[Yt] =
M ′(t)

M(t)
= u′(t) var(Yt) =

M ′′(t)

M(t)
−
(
M ′(t)

M(t)

)2

= u′′(t) .

Since the variance is nonnegative this proves that u is convex.

Given a function f(t) we define the Legendre transformation of f(t) to be a
new function f ∗(z) given by

Definition 1.6.2 The Legendre transform of a function f(t) is the function f ∗(z)
defined by

f ∗(z) = sup
t

(zt− f(t)) . (1.8)

Note that the supremum in Eq. (1.8) can be equal to +∞. If the supremum is
finite and f is differentiable then we can compute f ∗ using calculus, the supremum is
attained at the point t∗ such that the derivative of zt− f(t) vanishes, i.e., at the point
t∗

z = f ′(t∗) .

Then solving for t∗(z) and inserting in the l.h.s. of (1.8) gives

f ∗(z) = zt∗(z)− f ′(t∗(z)) .

For future use let us compute the Legendre transform of some logarithmic moment
generating functions.

Example 1.6.3 Let M(t) = eµt+σ
2t2/2 be the m.g.f of N0,1 and let u(t) = logM(t) =

µt+ σ2t2/2. Given z the maximum of zt− µt− σ2t2/2 is attained if t∗ satisfies

z − µ− σ2t∗ = 0 , t∗ =
z − µ
σ2

and thus

u∗(z) = zt∗ − µt∗ − σ2(t∗)2/2 =
(z − µ)2

2σ2
.

We see that u∗(z) is a parabola centered around µ.

Example 1.6.4 Let M(t) = (1−p)+pet be the m.g.f of B1,p and let u(t) = logM(t) =
log((1− p) + pet). We distinguish three cases

• If z > 1 then the function zt− log((1− p) + pet) is increasing since its derivative

is z − pet

(1−p)+pet > 0 for all t. The maximum is attained as t→∞ and is equal to
+∞ since

lim
t→∞

zt− log((1− p) + pet) = lim
t→∞

z(t− 1)− log((1− p)e−t + p) = +∞ .
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• If z < 0 then the function zt− log((1− p) + pet) is decreasing for all t and thus
the supremum is attained as t→ −∞. The supremum is +∞.

• For 0 ≤ z ≤ 1 the the maximum is attained if t∗ satisfies

z =
pet

(1− p) + pet
, t∗ = log

(
z

1− z
1− p
p

)
,

and we obtain

u∗(z) = z log

(
z

p

)
+ (1− z) log

(
1− z
1− p

)
.

A simple computation shows that u∗(z) is strictly convex and that u∗(z) has its mini-
mum at z = p.

Lemma 1.6.5 Let u(t) be the logarithmic moment generating function of the random
variable X. Then the Legendre transform u∗(z) of u(t) is a convex function which
satisfies u(z) ≥ 0. If σ2 > 0 then u(z) = 0 iff z = µ, i.e. u∗(z) is nonnegative and
takes its unique minimum (which is equal to 0) at the mean µ of X.

Moreover if z > µ then
u∗(z) = sup

t≥0
(tz − u(t)) .

and if z < µ then
u∗(z) = sup

t≤0
(tz − u(t)) .

Proof:
1) The convexity of u∗(z) follows from

αu∗(z1) + (1− α)u∗(z2) = sup
t

(αz1t− αu(t)) + sup
t

((1− α)z2t− (1− α)u(t))

≥ sup
t

((αz1 + (1− α)z2))t− u(t))

= u∗(αz1 + (1− α)z2) . (1.9)

2) Next note that u∗(z) ≥ 0z − u(0) = 0 and thus u∗(z) is nonnegative.
3) Suppose that u∗(z0) = 0 for some z0. Then supt(tz0 − u(t)) = 0. The supremum is
attained at t∗ which satisfies the equation z0 = u′(t∗) and thus we must have

0 = u∗(z0) = t∗u′(t∗)− u(t∗) . (1.10)

This equation has one solution, namely take t∗ = 0 since u(0) = 0. In that case
z0 = u′(0) = µ. Let us show that this is the unique solution. The function f(t) ≡
u(t)− tu′(t) satisfies

f(0) = 0 , f ′(t) = −tu′′(t) .
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If u′′(0) = σ2 > 0 then by continuity there exists δ > 0 such that u′′(t) > 0 for
t ∈ (−δ, δ). Thus f ′(t) > 0 for t ∈ (0, δ) and f ′(t) < 0 for t ∈ (−δ, 0). Therefore 0 is
the only solution of f(0) = 0.
4) If z > µ then for t < 0 we have

zt− u(t) ≤ µt− u(t) ≤ sup
t

(µt− u(t)) = u∗(µ) = 0 .

Since u∗(z) > 0 we conclude that the supremum is attained for some t ≥ 0. One argues
similarly for z < µ.

Theorem 1.6.6 (One-half of Cramer’s theorem) Let X1, X2, · · · be a sequence
of independent and identically distributed random variables. Assume that the moment
generating function M(t) of Xi exists and is finite in a neighborhood of 0. Let u(t) =
log φ(t) and u∗(z) = supz(zt− u(t)). Then for any a > µ we have

P

(
Sn
n
> a

)
≤ e−nu

∗(a)

and for any a < µ we have

P

(
Sn
n
< a

)
≤ e−nu

∗(a) .

Proof: We use Chernov bounds. Let a > µ, for t > 0 we have

P

(
Sn
n
≥ a

)
= P (Sn ≥ an)

= inf
t≥0

e−antE
[
etSn

]
= inf

t≥0
e−antM(t)n

= inf
t≥0

e−n(at−u(t)

= e−n supt≥0(at−u(t)

= e−n supt(at−u(t) = e−nu
∗(a) .

One proceeds similarly for a < 0.

1.7 Monte-Carlo algorithm

The basic Monte-Carlo method uses sums of independent random variables and the
law of large numbers to estimate a deterministic quantity. In order to illustrate the
method let us start by an example.
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Example 1.7.1 (Estimating the number π) We construct a random algorithm to
generate the number π. Consider a circle of radius 1 that lies inside a 2 × 2 square.
The square has area 4 and the circle has area π. Suppose we pick a point at random
within the square and define

X =

{
1 if the point is inside the circle
0 otherwise

and P (X = 1) = π/4. We repeat this experiment n times. That is we we select n
points inside the square independently. The number of points Sn within the circle can
be written as Sn = X1 + · · · + Xn where the Xi’s are independent copies of X. So
Sn = Bn,π

4
and E[Sn] = nπ/4. By the Law of Large Numbers we can expect that Sn

gives, for large enough n, a good approximation of π/4.
To estimate how good this approximation is, we will use the central limit theorem.

Suppose, for example, that we perform n = 10′000 trials and observe Sn = 7932, then
our estimator for π is 4 7932

10000
= 3.1728. By the Central Limit Theorem, Sn−nµ√

nσ
has

for sufficiently large n a distribution which is close to a normal distribution N(0, 1).
Therefore we will have

P

(
Sn
n
− 1.96

σ√
n
≤ µ ≤ Sn

n
+ 1.96

σ√
n

)
∼= 0.95 ,

for sufficiently large n. The value x = 1.96 is such that P (|N(0, 1)| ≤ x) = 0.95. For

this reason we call the interval
[
Sn
n
− 1.96 σ√

n
, Sn
n

+ 1.96 σ√
n

]
a 95% confidence interval.

In our case a 95% confidence interval for π/4 is[
Sn
n
− 1.96

σ√
n
,
Sn
n

+ 1.96
σ√
n

]
.

where σ =
√

π
4
(1− π

4
) which we can’t really evaluate since we do not know π. There

are several ways to proceed

1. Use the simple bound x(1− x) ≤ 1
4

so σ ≤ 1
2

and thus

1.96
σ√
n
≤ 1.96

1

2
√
n

= 0.0098 .

This gives the interval [3.1336, 3.2120] for a conservative 95% confidence interval.

2. We can simply use our estimate for π into the formula σ =
√

π
4
(1− π

4
) ∼= 0.405.

This gives a confidence interval of [3.1410, 3.2046] .
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3. Another way to estimate the variance when σ2 is unknown is to use the sample
variance given by

V 2
n =

1

n− 1

n∑
i=1

(
Xi −

Sn
n

)2

.

The sample is an unbiased estimator since we have E[V 2
n ] = σ2. To see this note

we can assume that µ = 0 and then we have

E[V 2
n ] =

1

n− 1

n∑
i=1

E

[
X2
i − 2Xi

Sn
n

+

(
Sn
n

)2
]

=
n

n− 1
σ2(1− 2

n
+

1

n2
n) = σ2 .

This example is a particular case of the hit-or-miss method. Suppose you want to
estimate the volume of the set B in Rd and that you know the volume of a set A which
contains B. The hit-or-miss method consists in choosing n points in A uniformly at
random and use the fraction of the points that land in B as an estimate for the volume
of B.

Another class of examples where Monte-Carlo methods can be applied is the com-
putation of integrals. Suppose you want to compute the integral

I1 =

∫ 1

0

e
√
x − ecos(x3)

3 + cos(x)
dx .

or more generally

I2 =

∫
S

h(x)dx

where S is a subset of Rd and h is a given real-valued function on S. A special example
is the function h = 1 on S in which case you are simply trying to compute the volume
of S. Another example is

I3 =

∫
Rd

h(x)f(x) dx .

where h is a given real-valued function and f is a p.d.f of some random vector on
Rd. All these examples can be written as expectations of a suitable random variable.
Indeed we have

I3 = E[h(X)] where X has p.d.f f(x) .

We have also
I1 = E[h(U)] where U = U[0,1] .
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To write I2 has an expectation choose a random vector such that its p.d.f f satisfies
f(x) > 0 for every x ∈ S. Extend h to Rd by setting k = 0 if x /∈ S. Then

I2 =

∫
Rd

h(x) dx =

∫
Rd

h(x)

f(x)
f(x) dx = E

[
h(X)

f(X)

]
.

Note that you have a considerable freedom in choosing f and this is what lies behind
the idea of importance sampling, (see Example 1.7.3 below).

Many many other problems can be put in the form (maybe after some considerable
work)

I = E [h(X)] ,

and the random variable X could also, of course be a discrete random variable.

Algorithm 1.7.2 (Monte-Carlo simple sampling) Let X be a random variable.
To estimate

I = E [h(X)] ,

the simple sampling consists in generating n i.i.d. random variables X1, X2, · · · , Xn

and set

In ≡
1

n

n∑
i=1

h(Xi) .

The quantity In gives an unbiased estimator of I, i.e., E [In] = I. By the strong law of
large numbers In converges to I with probability 1 as n→∞. Furthermore the variance
of the simple sampling estimate is

var(In) =
var(h(X))

n
.

Note that the variance var(In) can be used to determine the accuracy of our esti-
mate, for example by determining a 95% confidence interval as in Example 1.7.1. If
we denote σ2 = var(h(X)) then the half length of 95% confidence interval is given by
1.96σ/

√
n. If we wish our confidence to half length ε we need to choose n such that

n ≥ ε2

(1.96)2σ2
.

So, as a rule we have

accuracy of the Monte−Carlo method is of order
√

n .

which means that to imporve the accuracy of out estimate by a factor 10 we should
perform 100 times more estimates. This is not very good, and the Monte-Carlo method



CHAPTER 1. RANDOM VARIABLES AND MONTE-CARLO METHOD 31

cannot compete with numerical integration for a simple integral. However it can be-
come competitive if the integral is over a space of very large dimension since the
accuracy is dimension-independent.

We consider next another example which illustrate one technique through which
one can reduce the variance considerably (variance reduction). The technique we
will use goes under the name of importance sampling. Suppose we want to compute
E[h(X)]. We can use simple sampling by simulating i.i.d random variables with p.d.f.
f(x). Instead of using X we can choose another random variable Y with p.d.f g(x)
and write

E[h(x)] =

∫
h(x)f(x)dx =

∫
h(x)f(x)

g(x)
g(x) dx = E

[
h(Y )f(Y )

g(Y )

]
.

We then simulate i.i.d random variables Yi with p.d.f g and this gives a new estimator

Jn =
1

n

n∑
j=1

h(Yj)f(Yj)

g(Yj)
,

The variance is given by

var(Jn) =
1

n
var

(
h(Y )f(Y )

g(Y )

)
=

1

n

(∫
h(x)2f(x)2

g(x)
dx−

(∫
h(x)f(x)dx

)2
)
.

The idea of importance sampling is to choose Y such that

var

(
h(Y )f(Y )

g(Y )

)
< var(h(X)) ,

and thus to improve the efficiency of our method.
There are many other methods to reduce the variance and some are touched upon

in the exercises. We illustrate the power of the importance sampling by considering a
example.

Example 1.7.3 (Network reliability)Let us consider an application of simple sam-
pling to nework reliability. Consider a connected graph as in Figure 1.1. Each edge
as a probability q of failing and all edges are independent. Think of q as a very small
number, to fix the idea let q = 10−2. Fix two vertices s and t and we want to compute
the disconnection probability

pD ≡ P (s is not connected to t by working edges)

This can be computed by hand for very small graphs but even for the graph shown in
Figure 1.1 this is hardly doable. Our graph here has 22 edges and let E = {e1 · · · e22}
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Figure 1.1: A graph with 11 vertices and 22 edges

denote the set of all edges. Let X denote the set of edges that fail, so X is a random
subset of E . So for every B ⊂ E we have

P (X = B) = q|B|(1− q)|E|−|B|

where |A| denotes the cardinality of A. If we denote by S the set of all subsets of E
then X is a random variable which takes value in S.

Let us define the function k : S → R by

k(B) =

{
1 if s is not connected to t when the edges of B fail
0 if s is connected to t when the edges of B fail

Then we have

pD =
∑

B ; k(B)=1

P (X = B) =
∑
B

k(B)P (X = B) = E[k(X)] .

The simple sampling estimator for pD is

1

n

n∑
i=1

k(Xi)

where X1, · · ·Xn are i.i.d copies of X. Each Xi can be generated by tossing an unfair
coin 22 times. Then our estimator is simply the fraction of those simulated networks
that fail to connect s and t.

In order to get an idea of the number involved let us give a rough estimate of pD.
It is easy to see that at least 3 nodes must fail for s not to be connected to t. So we
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have

pD ≤ P (|X| ≥ 3) = 1−
2∑
j=0

(
22

j

)
qj(1− q)22−j ∼= 0.00136 ,

since |X| = B(22, q).
On the other hand we can get a lower bound for pD by noting that

pD ≥ P (e1, e2, e3 fail) = q3 = 10−6 .

Therefore pD is between 10−2 and 10−6 which is very small. We will thus need very
tight confidence intervals. To compute var(In) note that k(X) is a Bernoulli random
variable with parameter pD. Hence

var(In) =
1

n
pD(1− PD) ∼= pD ,

since pD is small. To get a meaningful confidence interval we need its half length
2
√
pD/n to be at the very least less than pD/2. This implies however that we must

choose n > 16/pD, and thus we need millions of iterations for a network which is not
particularly big.

Let us use importance sampling here. Note that E[k(x)] is very small which means
that typical X have k(X) = 0. The basic idea is to choose the sampling variable in
such a way that we sample more often the X for which k(X) = 1 (i.e., large in our
case).

A natural try is take the random variable Y to have a distribution φ(D) = P (y =
B) = θB(1−θ)22−|B| with a well chosen θ. Since k(Y ) = 0 whenever |Y | > 3 we can for
example choose θ such that E[|Y |] = 3. Since |Y | = B(22, θ) this gives E[|Y |] = 22θ
and thus θ = 3/22.

The estimator is now

Jn =
1

n

n∑
i=1

k(Yi)p(Yi)

φ(Yi)

where Yj are i.i.d with distribution φ(Y ). Let us compute the variance of Jn. We have

var(Jn) =
1

n

(∑
B

k(B)2p(B)2

φ(B)2
φ(B)− p2

D

)

=
1

n

 ∑
B : k(B)=1

p(B)

φ(B)
p(B)− p2

D

 . (1.11)

Note that

p(B)

φ(B)
=

qB(1− q)22−|B|

θB(1− θ)22−|B| =

(
1− q
1− θ

)22(
q(1− θ)
θ(1− q)

)|B|
= 20.2× (0.064)|B| .
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In Eq. (1.11) all terms with k(B) = 1 have |B| ≥ 3. For those B we have

p(B)

φ(B)
≤ 20.2× (0.064)3 ≤ 0.0053

So we get

var(Jn) ≤ 1

n

∑
B : k(B)=1

0.0053 p(B) =
0.0053 pD

n

This means that we have reduced the variance by a factor approximately of 200. So
for the same n the confidence interval is going to be about

√
200 ∼= 14 times smaller.

Alternatively a given confidence interval for In can be obtained for Jn/200. This is
pretty good!



Chapter 2

Finite Markov Chains

2.1 Introduction

A discrete-time stochastic processes is a sequence of random variables

{Xn} = X0, X1, X2, · · · ,

where each of the random variables Xn takes value in the state space S (the same S
for all n). Throughout this chapter we assume that

S is finite.

so that Xn are discrete random variables. More general state S will be considered later.
Usually we will think of n as ”time” and Xn describe the state of some system at

time n. The simplest example of a stochastic process is to take the Xn as a sequence
of i.i.d random variables. In that case one simply sample a random variable again and
again. In general however the Xn are not independent and to describe a stochastic
process we need to specify all the joint probability density functions

P {X0 = i0, X1 = i1, · · · , Xn = in}

for all n = 0, 1, · · · and for all i0 ∈ S, · · · in ∈ S. Instead of the joint p.d.f we can
specify instead the conditional probability density functions

P {X0 = i0}
P {X1 = i1|X0 = i0}
P {X2 = i2|X1 = i1, X0 = i0}

...

P {Xn = in|Xn−1 = in−1, · · · , X1 = i1, X0 = i0} (2.1)

35
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and we have the relation

P {X0 = i0, X1 = i1, · · · , Xn = in} =

P {X0 = i0}P {X1 = i1|X0 = i0} · · ·P {Xn = in|Xn−1 = in−1, · · · , X0 = i0} .

To obtain a Markov chain ones makes a special assumption on the conditional p.d.f.:
Imagine you are at time n− 1 (your ”present”), think of time n as your ”future” and
1, 2, · · · , n−2 as your ”past”. For a Markov chain one assumes that the future state
depends only on the present state but not on the past states. Formally we have

Definition 2.1.1 A stochastic process {Xn} with a discrete state space S is called a
Markov chain if

P {Xn = in|Xn−1 = in−1, · · · , X1 = i1, X0 = i0} = P {Xn = in|Xn−1 = in−1}

for all n and for all i0 ∈ S, · · · in ∈ S.

The conditional probabilities P {Xn = in|Xn−1 = in−1} are called the transition
probabilities of the Markov chain {Xn}. In order to specify a Markov chain we need
to specify in addition the initial distribution P{X0 = i0} and we have then

P {X0 = i0, X1 = i1, · · · , Xn = in} =

P {X0 = i0}P {X1 = i1|X0 = i0} · · ·P {Xn = in|Xn−1 = in−1}

The transition probabilities P {Xn = j|Xn−1 = i} are the probability that the chain
moves from i to j at time n. In general these probabilities might depend on n. If they
are independent of n then we call the Markov chain time homogeneous.

Unless explicitly stated we will always assume in the sequel that the Markov chain
is time homogeneous. Such a Markov chain is specified by

µ(i) ≡ P{X0 = i} , initial distribution

and
P (i, j) ≡ P{Xn = j|Xn−1 = i} transition probabilities

All quantities of interest for the Markov chain can be computed using these two objects.
For example we have

P {X0 = i0, X1 = i1, X2 = i2} = µ(i0)P (i0, i1)P (i1, i2) .

or
P {X2 = i} =

∑
i0∈S

∑
i1∈S

µ(i0)P (i0, i1)P (i1, i)

and so on.
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If S is a finite set with N elements, without loss of generality, we can relabel the
state so that S = {1, 2, · · · , N}. It will be convenient to set

µ = (µ(1), · · · , µ(N))

that is µ is a row vector whose entries are the initial distribution. The vector µ is
called a probability vector, i.e., µ is a vector such that µ(i) ≥ 0 and

∑
i µ(i) = 1.

Also we will write P for the N ×N matrix whose entries are P (i, j),

P =


P (1, 1) P (1, 2) · · · P (1, n)
P (2, 1) P (2, 2) · · · P (2, n)

...
...

...
P (n, 1) P (n, 2) · · · P (n, n)


The matrix P is called a stochastic matrix, i.e., P is matrix with nonnegative entries
P (i, j) ≥ 0 and the sum of every row is equal to 1,

∑N
j=1 P (i, j) = 1 for all i.

Lemma 2.1.2 (a) The n-step transition probabilities are given by

P {Xn = j|X0 = i} = P n(i, j)

where P n is the matrix product P · · ·P︸ ︷︷ ︸
n times

.

(b) If µ(i) = P{X0 = i} then

P{Xn = i} = µP n(i) .

(c) If f = (f(1), · · · , f(n))T is a column vector then we have

P nf(i) = E[f(Xn)|X0 = i] .

Proof: (a) By induction it is true for n = 1 and so let assume the formula is true for
n− 1. We condition on the state at time n− 1 , use the formula

P (AB|C) = P (A|BC)P (B|C)

for conditional probabilities, the Markov property, and the induction hypothesis. We
obtain

P {Xn = j|X0 = i} =
∑
k∈S

P {Xn = j ,Xn−1 = k|X0 = i}

=
∑
k∈S

P {Xn = j|Xn−1 = k ,X0 = i}P {Xn−1 = k|X0 = i}

=
∑
k∈S

P {Xn = j|Xn−1 = k}P {Xn−1 = k|X0 = i}

=
∑
k∈S

P n−1(i, k)P (k, j) = P n(i, j) . (2.2)
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(b) Note that if µ is a probability vector and P is a stochastic matrix then µP is a
probability vector since∑

i

µP (i) =
∑
i

∑
j

µ(j)P (j, i) =
∑
j

µ(j)
∑
i

P (j, i) =
∑
j

µ(j) .

Furthermore by the formula for conditional probabilities and (a)

P{Xn = j} =
∑
k∈S

P{Xn = j|X0 = k}P{X0 = k} =
∑
k

µ(k)P n(k, j) = µP n(j) .

(c) We have

P nf(i) =
∑
k

P n(i, k)f(k) =
∑
k

f(k)P {Xn = k|X0 = i} = E[f(Xn) |X0 = i] .

A basic question in Markov chain is to understand the distribution of {Xn} for
large n, for example we want to know whether the limit

lim
n→∞

P{Xn = i} = lim
n→∞

µP n(i)

exists or not, whether it depends on the choice of initial distribution π and how to
compute it.

Definition 2.1.3 A probability vector π is called a limiting distribution if the limit

lim
n→∞

µP n = π

exists.

Definition 2.1.4 A probability vector π is called a stationary distribution if the
limit

πP = π

exists.

Limiting distributions are always stationary distributions:

Lemma 2.1.5 If π is a limiting distribution then π is a stationary distribution.

Proof: Suppose limn→∞ µP
n = π. Then

πP = ( lim
n→∞

µP n)P = lim
n→∞

µP n+1 = lim
n→∞

µP n = π .

and thus π is stationary.

Later in this chapter we will derive conditions under which stationary distributions
are unique and are limiting distributions.
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2.2 Examples

We give here a fairly long list of classical and useful Markov chains that we will meet
again and again in the sequel.

Example 2.2.1 (2-state Markov chain)Let us consider a Markov chain with two
states, i.e. S = {1, 2}. The transition matrix has the general form

P =

(
1− p p
q 1− q

)
. (2.3)

The equation for the stationary distribution πP = π is

π(1)(1− p) + π(2)q = π(1)

π(1)q + π(2)(1− p) = π(1)

or pπ(1) = qπ(2). Normalizing to a probability vector gives π =
(

q
p+q

, p
p+q

)
.

We show that π is also a limiting distribution. Let us set µn ≡ µP n and let us look
at the difference between µn and π. We have using µn(2) = 1− µn(1)

µn(1)− π(1) = µn−1P (1)− π(1) = µn−1(1)(1− p) + (1− µn−1(1))q − q

p+ q

= µn−1(1− p− q)− q

p+ q
(1− p− q) = (1− p− q)(µn(1)− π(1))

By induction we have µn(1) − π(1) = (1 − p − q)n(µ0(1) − π(1)). If either p > 0 or
q > 0 then −1 < 1 − p − q < 1 and so limn→∞ µn(1) = π(1). Clearly we have also
limn→∞ µn(2) = π(2).

If either p or q does not vanish then µn = µP n converges to a stationary distribution.

The next example is a very simple example of Markov chain.

Example 2.2.2 (i.i.d random variables) Let Xn, n = 0, 1, 2, · · · be a sequence of
i.i.d random variables with common distribution µ(i) = P{Xn = i} for all n. The Xn

satisfy the Markov property since all the Xn are independent

P {Xn = in|Xn−1 = in−1 · · ·X0 = i0} = P {Xn = in} = P {Xn = in|Xn−1 = in−1}

The stationary and limiting distribution iare µ and the transition matrix is

P =


µ(1) µ(2) · · · µ(n)
µ(1) µ(2) · · · µ(N)

...
...

...
µ(1) µ(2) · · · µ(N)
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Example 2.2.3 (random walks on {0, 1, · · · , N}) In the random walk Markov chain
if Xn = j and j 6= 0, N then the next step consist in jumping to the right to j+ 1 with
probability p and jumping to the right with probability 1− p, i.e.,

P (j, j + 1) = p , P (j, j − 1) = 1− p , j = 1, · · · , N − 1

If j is at ”the boundary”, i.e., either 0 or N there are several variants of the random
walks

(a) (Absorbing boundary conditions:) Upon hitting the boundary the walker stays
there, i.e.

P (0, 0) = 1 P (N,N) = 1

The states 0 or N are called absorbing states: if the Markov chain reaches 0 at some
time n then Xn+k = 0 for all k ≥ 0. For Markov chain with absorbing states the
questions of interests are

How long does it take to reach an absorbing state?

What it the probability to reach one absorbing state (say 0) before reaching another
one (say N).

In the context of the random walk this is called the gambler’s ruin problem.

(b) (Reflecting boundary conditions) Upon hitting the boundary the random
walks bounces back, i.e.,

P (0, 1) = 1 P (N,N − 1) = 1

(c) (Partially reflecting boundary conditions) The following intermediate case
has nice properties, in particular an easy formula for the invariant measure.

P (0, 0) = (1− p)P (0, 1) = p P (N,N − 1) = (1− p), P (N,N) = p .

(d) (Periodic boundary conditions) In the periodic case we imagine that 0 and N
are ”neighbors” or we identify 0 with N + 1. We have

P (0, 1) = p , P (0, N) = (1− p) , P (N, 0) = p , P (N,N − 1) = (1− p) .
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Example 2.2.4 (finite queueing models) Imagine the following phone system. An
operator answers calls and if the operator is busy answering a call incoming calls can
be put on holds and a maximum of N caller can be in the system. If exactly N people
are in the system then a caller will be bounced back. We assume that during each time
interval one new caller calls with probability p and 0 caller calls with probability 1− p.
Also during each time interval one call is completed with probability q and 0 call is
completed with probability 1− q.

If Xn is the number of people in the system then the state space of the system is
{0, 1, 2, · · · , N} and the transition probabilities are

P (0, 0) = 1− p , P (0, 1) = p

and for 1 ≤ j ≤ N − 1

P (j, j − 1) = q(1− p) , P (j, j) = pq + (1− p)(1− q) , P (j, j + 1) = p(1− q) ,

and
P (N,N − 1) = q , P (N,N) = 1− q .

Example 2.2.5 (Coupon collecting problem)A company offers toys in breakfast
cereal boxes. There are N different toys available and each toy is equally likelky to
be found in any cereal box. Let Xn be the number of distinct toys that you collect
after buying n boxes and is natural to set X0 = 0. Then Xn is a Markov chain, it
has a simple structure since Xn either stays the same of increase by 1. The transition
probabilities are

P (j, j + 1) = P{ new toy | already j toys} =
N − j
N

.

and

P (j, j) = P{ no new toy | already j toys} =
j

N
.

Clearly after a random finite tim τ , the Markov chain XN reaches the absorbing state
N . To compute E[τ ] let us write

τ = T1 + · · ·+ TN ,

where Ti is the time needed to get your ith after you have gotten your (i−1)th toy. The
Ti’s are independent and have Ti has a geometric distribution with pi = (N − i)/N .
Thus

E[τ ] =
N∑
i=1

E[Ti] =
N∑
i=1

N

N − i
= N

N∑
i=1

1

i
≈ N ln(N) .
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Figure 2.1: An example of a graph with vertex set {1,2,3,4,5}

Example 2.2.6 (Random walk on graphs)A graph G consists of a vertex set V
and a edge set E where the elements of E are (unordered) pairs of vertices. Think of
the graphG as a collection of dots (the vertices) and lines joining two dots v and w if
and only if the pair {v, w} is an edge. We say that the vertex v is a neighbor of the
vertex w, and write v ∼ w, if {v, w} is an edge. The degree of a vertex v, denoted
deg(v), is the number of neighbor of v.

Given a graph G = (V,E) the simple random walk on G is the Markov chain with
state space V and transition matrix

P (v, w) =

{ 1
deg(v)

if w ∼ v

0 otherwise
.

For example if the graph is the one given in figure 2.1 then the transition matrix is

P =


0 1

3
1
3

1
3

0
1
4

0 1
4

1
4

1
4

1
3

1
3

0 0 1
3

1
3

1
3

0 0 1
3

0 1
3

1
3

1
3

0


The invariant distribution for the random walk on graph is given by

π(v) =
deg(v)

2|E|

where |E| is the cardinality of the set E, i.e., the number of edges. First note that∑
v π(v) = 1 since each edge connects two vertices. To show that it is invariant note

that

πP (v) =
∑
w;w∼v

deg(w)

|E|
1

deg(w)
=

1

|E|
∑
w;w∼v

1 = π(v)
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Example 2.2.7 (Random walk on the N-dimensional hypercube) The K-
dimensional hypercube is a graph whose vertices are the binary K-tuples {0, 1}K .
Two vertices are connected by an edge when they differ in exactly one coordinate.
The simple random walk on the hypercube moves from one vertex x = (x1, · · · , xK)
by choosing a coordinate j ∈ {1, 2, · · · , K} uniformly at random and setting the new
state equal to x′ = (x1, · · · , 1− xj, · · · , xK). That is the jth bit is flipped.

The degree of each vertex is k, the number of vertices is 2K and the number of
edges is 2kk/2 so we have for any x

π(x) =
1

2k

which is the uniform distribution on S = V .

Example 2.2.8 (Ehrenfest urn model)Suppose K balls are distributed among two
urns, A and B. At each move one ball is selected uniformly at random among the K
balls and is transferred from its current urn to the other urn. If Xn is the number of
balls in urn A then the state space is S ′ = {0, 1, · · · , K} and the transition probabilities

P (j, j + 1) =
K − j
K

, P (j, j − 1) =
j

K
.

We will show that the invariant distribution is

π(j) =

(
K

j

)
1

2K
.

Indeed we have

πP (j) =
∑
k

π(k)P (k, j)

= π(j − 1)P (j − 1, j) + π(j + 1)P (j + 1, j)

=
1

2K

[(
K

j − 1

)
K − (j − 1)

K
+

(
K

j + 1

)
j + 1

K

]
=

(
K

j

)
1

2K
.

This Markov chain is closely related to the simple random walk on the hypercube.
Let S be the state space of the random walk Yn and S ′ the state space of the urn model
Markov chain Xn. Let us define the map F : S 7→ S ′ given by

F (x) = j iff j = #{l, xl = 0} .
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that is we just count the number of 0 in x. The transition of the random walks
corresponds then exactly to the transition for the urn model and we have for any x
with F (x) = j

P (j, j + 1) =
∑

y;F (y)=j+1

P (x, y) =

(
K

j

)
1

2K

We obtain the urn model by lumping together the states of the random walk on the
hypercube. This does not always lead to a Markov chain, but if does the Markov chain
is called lumpable.

2.3 Existence and uniqueness of stationary distri-

bution

We first show that stationary distribution always exist for finite state Markov chains.
This will not be the case if the state space is countable.

Theorem 2.3.1 Let Xn be a Markov chain on a finite state space S. Then Xn has at
least one stationary distribution.

Proof: We prove this using the Boltzano Weierstrass theorem which asserts that if {xn}
is a bounded sequence in Rn (i.e., there exists M such that ‖xn‖ ≤ M for all n) then
we can find a convergent subsequence {xnk} which converges to x ∈ A.

Let us choose an arbitrary initial distribution µ and let define

νn =
1

n

(
µ+ µP + · · ·µP n−1

)
i.e., we average the distribution of Xn over the first n steps. Note that νn is a probability
vector, in particular 0 ≤ νn(j) ≤ 1 for all j ∈ S and thus the sequence {νn} is bounded.

Note further that

νnP − νn =
1

n

(
µP + · · ·µP n − µ− · · · − µP n−1

)
=

1

n
(µP n − µ) .

and thus

|νnP (j)− νn(j)| ≤ 1

n
(2.4)

Using Boltzano-Weierstrass Theorem we pick an increasing sequence nk with
limk→∞ nk =∞ such that the sequnce {νn1 , νn2 , · · · } converges, i.e.,

lim
k→∞

νnk(j) = π(j) .
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and π is a probability vector.
Finally we have

|πP (j)− π(j)| = lim
k→∞
|νnkP (j)− νn(j)| ≤ lim

k→∞

2

nk
= 0 .

and thus πP = π and π is invariant.

In general we can have several stationary distribution for a Markov chains, in par-
ticular if the state space can be partitioned in at least two different classes which do
not communicate (see later for more details). We say that j is accessible from i and
write i→ j if there exists n ≥ 0 such that P n(i, j) > 0. We say that i and j commu-
nicate if i→ j and j → i in which case we write i↔ j. A Markov chain Xn is called
irreducible if every state i ∈ S communicate with every other state j ∈ S.

Lemma 2.3.2 Let Xn be an irreducible Markov chain and let π be a stationary distri-
bution. Then π(i) > 0 for any i ∈ S.

Proof: If π is stationary distribution then π(i) > 0 for some i ∈ S. Suppose i→ j then
we have

π(j) =
∑
k

π(k)P n(k, j) ≥ π(i)P n(i, j) > 0 .

and thus π(j) > 0. Since Xn is irreducible π(j) > 0 for any j ∈ S.

We also prove that that stationary distribution is unique. Note that π is a left
eigenvector of P corresponding to the eigenvalue 1, or equivalently a right eigenvector
for the transpose matrix P T (i, j) = P (j, i). To prove uniqueness we are going to study
right eigenvectors of P instead.

Proposition 2.3.3 Suppose Xn is irreducible and h is a column vector such that Ph =
h then h = c(1, 1, · · · , 1) is a constant vector.

Proof: Suppose Ph = h, then there exists i0 such that h(i0) = maxi∈S h(i) ≡ M .
Suppose i0 → j but h(j) < M , then, since P nh = h,

M = h(i0) = P nh(i0) = P n(i0, j)h(j) +
∑
i 6=i0

P n(i, j)h(j) < M
∑
j

P n(i0, j) = M ,

and this is a contradiction.

Corollary 2.3.4 Suppose Xn is irreducible then there exists a unique stationary dis-
tribution.
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Proof: The previous proposition show that the kernel of P−I has dimension one. From
linear algebra we know that the dimension of the kernel of a matrix A is the same as
the dimension of the kernel of the transpose matrix AT . So the kernel of P T − I has
dimension 1, this space contains exactly one vector whose entries sum to 1, namely π.

Example 2.3.5 (Random walks, cont’d)The random walks of Example 2.2.3 are
irreducible for reflecting, partially reflecting, and periodic boundary conditions. For
absorbing boundary conditions no states are accesible from 0 or N . In that case the
Markov chain is not irreducible and we can find two stationary distribution, π =
(1, 0, · · · , 0) and π′ = (0, · · · , 0, 1).

For an irreducible Markov chain Xn, we have a unique stationary distribution π and
it is natural to ask whether µP n converges to π. This is however in general not true.
To see what can go wrong let us consider the random walk on {0, · · · , N} with periodic
boundary conditions and let us assume that N is odd so that the state space has an
even number of elements. The stationary distribution is the uniform distribution

π =

(
1

N + 1
, · · · , 1

N + 1

)
.

On the other hand let us suppose that the initial distribution is X0 = 0, then for odd
n, Xn will be on an odd site j ∈ S and will be on an even site for even times n. In
that case the distribution of Xn at time n alternates between even and odd states and
thus certainly cannot converges to π.

This example motivates the following definition. For a state j, let us consider the
set

T (j) = {n ≥ 1 , P n(j, j) > 0}

of times when the chain can return to the starting position j. The period of the state
j is the greatest common divisor of T (j).

We have

Lemma 2.3.6 Suppose i↔ j, then the period of i and the period of j coincide.

Proof: Since i↔ j there exists integers r and l such that P r(i, j) > 0 and P l(j, i) > 0.
Set m = r + l. Then we have

Pm(i, i) ≥ P r(i, j)P l(j, i) > 0

and
Pm(j, j) ≥ P l(j, i)P r(i, j) > 0
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and thus m ∈ T (i) ∩ T (j). Furthermore assume that t ∈ T (i) then

P t+m(j, j) ≥ P l(j, i)P t(i, i)P r(i, j) > 0 ,

and thus t+m ∈ T (j). If dj is the gcd of T (j) then, by the above we have

m = kdj , m+ t = k̃dj

and thus t = (k̃ − k)dj that t ∈ T (j). This implies that T (i) ⊂ T (j) and thus gcd
T (j) ≤ gcd T (i). By reversing the roles of i and j we have gcd T (j) = gcd T (j).

We say that a Markov chain is aperiodic if the period of every state is 1.

Example 2.3.7 (Random walks on graph, cont’d)The random walks on a graph,
see Example 2.2.6, is irreducible if and only if the graph is connected. The random
walk is aperiodic if and only if the graph is not bipartite ( a graph is bipartite if there
exists a partition V = V1 ∪V2 of the set off all vertices that v ∼ w if and only if v ∈ V1

and w ∈ V2.

We will need

Proposition 2.3.8 If Xn is irreducible and aperiodic then there exists n0 such that
P n(i, j) > 0 for all n ≥ n0 and all i, j ∈ S.

Proof: The proof relies on a number-theoretic fact (whose proof is omitted): suppose
A is a subset of the integers which is closed under addition and whose gcd is 1, then
A contain all but finitely many integers.

For j ∈ S, if m,n ∈ T (j) then m + n ∈ m + n ∈ T (j) since we have P n+m(j, j) ≥
P n(j, j)Pm(j, j) > 0. This shows that T (j) is closed under addition and thus there
exists n(j) such that P n(j, j) > 0 for all n ≥ n(j). Since i→ j there exists k = k(j, i)
such that P n+k(j, i) ≥ P n(j, j)P k(j, i) > 0 if n > n(j). Since S is finite we can find a
n0 such that P n(i, j) > 0 for all n ≥ n0 and all i and j.

With all this preparation we can now prove.

Theorem 2.3.9 Let Xn be an irreducible and aperiodic Markov chain with stationary
distribution π. There exists a constant C > 0 and number α with 0 ≤ α < 1 such that
for any initial distribution µ we have

|µP n(j)− π(j)| ≤ Cαn , (2.5)

i.e., the distribution of Xn converges, exponentially fast, to π.
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Proof: Since the Markov chain is irreducible and aperiodic we can find an integer r
such that P r has strictly positive entries. Let Π be the stochastic matrix

Π =


π(1) π(2) · · · π(N)
π(1) π(2) · · · π(N)

...
...

...
π(1) π(2) · · · π(N)


where every row is the stationary distribution π. Note that this corresponds to inde-
pendent sampling from the stationary distribution.

By proposition 2.3.8 we can pick δ > 0 sufficiently small such that

P r(i, j) ≥ δΠ(i, j) = δπ(j) .

for all i, j ∈ S. Let us set θ = 1 − δ and define define a stochastic matrix Q through
the equation

P r = (1− θ)Π + θQ .

Furthermore we will need the fact that if M is any stochastic matrix then we have
MΠ = Π (because all the rows are the same) and that if M is a stochastic matrix such
that πM = π then ΠM = Π.

Next we show, by induction, that any integer k ≥ 1,

P kr = (1− θk)Π + θkQk .

This is true for k = 1 and so let us assume it is true for k. We have then using ΠP r = Π
and QΠ = Π.

P r(k+1) = P rkP r =
[
(1− θk)Π + θkQk

]
P r (2.6)

= (1− θk)ΠP r + θkQk[(1− θ)Π + θQ] (2.7)

= (1− θk)Π + θk(1− θ)Π + θk+1Qk+1 (2.8)

= (1− θk+1)Π + θk+1Qk+1 , (2.9)

and this concludes the induction step. From this we see that P rk → Π as k →∞. An
arbitrary integer n can be written as n = kr + l where 0 ≤ l < r. We have then

P n = P krP l = Π + θk
[
QkP l − Π

]
and thus

|P n(i, j)− π(j)| = θk
∣∣QkP l(i, j)− Π(i, j)

∣∣ ≤ θk ≤ 1

θ
(θ1/r)n .

Finally if µ is an arbitrary initial distribution we obtain the desired bound by multi-
plying P n(i, j) − π(j) by µ(i) and summing over i. So we obtain (2.5) with C = θ−1

and α = θ1/r
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So we have show that the stationary distribution is also a limiting distribution. We
give first a characterization of π(j) in terms of occupation times. To do this we need
a lemma from analysis

Lemma 2.3.10 Suppose {an} is a sequence of number converging to a. Let

bn =
1

n
(a0 + · · · an−1) =

1

n

n−1∑
k=0

ak

then limn→∞ bn = a.

Proof: (see exercise).

Note that the converse statement is not always true. If bn converges then an needs
not converge. (Take e.g. {an} = {0, 1, 0, 1, 0, · · · }).

From Theorem 2.3.9 we have P n(i, j)→ π(j) and thus, by Lemma 2.3.10,

lim
n→∞

1

n

n∑
k=1

P k(i, j) = π(j) .

In order to interpret this quantity let us introduce the random variable

Y (j)
n ≡

n∑
k=1

1{Xk=j}

where 1A is the indicator function of the event A. The random variables Y
(j)
n counts

the number of visits to the state j up to time n. Note that if X0 = i then

E[1{Xk=j}|X0 = i] = P k(i, j) ,

and thus we conclude that

π(j) = lim
n→∞

1

n
E

[
n∑
k=1

1{Xk=j}

]
,

that is π(j) represents the expected fraction of time that the Markov chain spends in
i.

We also need another random variable which is the first return time to state
j. It is defined as

τ (j) = min{n > 0, Xn = j} .

i.e., τ (j) is the first time the Markov chain returns to j.
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We can also consider kth return to state j. By the Markov property, once the
Markov chain reaches j it forgets about the past, and therefore the kth return to j will
occur at the time

T
(j)
k = τ

(j)
1 + · · ·+ τ

(j)
k ,

where τ
(j)
l are independent copies of the return times τ (j). For l ≥ 2 τ

(j)
l is conditioned

on starting at j while for l = 1 it depends on the initial condition. Note that by the
strong LLN,

lim
k→∞

Tk
k

= lim
k→∞

1

k

(
τ

(j)
1 + · · ·+ τ

(j)
k

)
= E[τ (j)|X0 = j] .

Using this we obtain

Theorem 2.3.11 (Ergodic Theorem for Markov chain). Let Xn be an irreducible
aperiodic Markov chain with arbitrary initial condition µ, then, with probability 1 we
have

lim
n→∞

1

n

n∑
k=1

1{Xn=j} = π(j) .

Moreover if τ (j) the first return time to j

π(j) =
1

E[τ (j)|X0 = j]
.

Proof: Given n consider a sample of the Markov chain X0, X1, X2, · · · , ....Xn. Let us
denote Yn = Y

(j)
n the number of times that the Markov chain visits j up to time n. By

definition if Yn = k then we have

T
(j)
k ≤ n < T

(j)
k+1

So we obtain
T

(j)
Yn

Yn
<

n

Yn
≤

T
(j)
Yn+1

Yn + 1

Yn + 1

Yn

Now taking n → ∞ both extremes of the inequality converge to E[τ (j)|X0 = j] with
probability 1 and thus we conclude that with probability 1

lim
n→∞

Yn
n

=
1

E[τ (j)]
.

On the other hand we know that

lim
n→∞

E[Yn]

n
= π(j) ,
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and thus

π(j) =
1

E[τ (j)|X0 = 1]
.

Note that this theorem is of practical importance: it is, in principle, enough to
generate one sufficiently long sample of the Markov chain to produce the stationary
distribution π.

We generalize slightly the ergodic theorem by considering a function f : S → R
or equivalently a a column vector f = (f(1), · · · , f(N))T . You may think of f(j) as
being the reward for being in state j.

Corollary 2.3.12 Let Xn is an irreducible Markov chain with stationary distribution
π. Then for any initial distribution µ we have, with probability 1,

lim
n→∞

1

n

n−1∑
k=0

f(Xk) =
∑
j

π(j)f(j) .

Proof: We write

f(Xk) =
∑
j∈S

f(j)1{Xk=j} .

and thus
1

n

n−1∑
k=0

f(Xk) =
∑
j∈S

f(j)

[
1

n

n−1∑
k=0

1{Xk=j}

]
→
∑
j∈S

f(j)π(j) .

2.4 Periodicity

In this section we discuss, briefly, the behavior of periodic and irreducible Markov
chains.

Let us assume that Xn is irreducible and has period d > 1. Let us pick two states
i and j. By irreducibility there exists m and r with Pm(i, j) > 0 and P l(j, i) > 0 and
so a return to i is possible in n = m + l steps. So d divides n + l. Therefore if j can
be reached from i in m1 steps and in m2 steps then m2 −m1 must be divisible by d
so we can write m1 = k1d + r and m2 = k2d + r for some 0 ≤ r < d− 1. So j can be
reached from i only in r, d+ r, 2d+ r, · · · steps. This implies that we can decompose
the state space

S = G1 ∪ · · · ∪Gd

and the only transitions that can occur are from Gl to Gl+1 (and we set that 1 ≡ d+1).
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Note also that, in d steps the Markov chain moves from Gl back to Gl and since
Xn is irreducible the Markov chain with state space Gl and transition matrix P d is
irreducible and aperiodic.

Relabelling the state space we can assume that the transition matrix in the block
form

P =


0 PG1G2 0 0 · · · 0
0 0 PG2G3 0 · · · 0
...

...
...

...
0 0 · · · 0 PGd−1Gd

PGdG1 0 · · · 0 0


and we have

P d =


P d
G1

0 0 · · · 0
0 P d

G2
0 · · · 0

...
...

...
0 0 · · · 0 P d

Gd


We can now use our results on aperiodic irreducibles chains to deduce the behavior

of period chains. Let us denote by πGl the stationary distribution for the Markov chain
with transition matrix P d

Gl
.

If i ∈ Gl and j ∈ Gl then we have

lim
n→∞

P nd(i, j) = πGl(j) ,

and thus for i ∈ Gl and j ∈ Gl+1

lim
n→∞

P nd+1(i, j) = lim
n→∞

∑
k∈Gl+1

P (ik)P nd(k, j) =
∑

k∈Gl+1

P (ik)πGl+1
(j) = πGl+1

(j) ,

and so i ∈ Gl and j ∈ G(l+r)mod(d) we have

lim
n→∞

P nd+r(i, j) = πGl+r(j) .

So for a given i ∈ S and j ∈ Gl the sequence P n(i, j) is asymptotically periodic where a
sequence of d−1 successive 0 alternates with a number eventually very close to πGl(k).

Let us define now

π ≡ 1

d
(πG1 , · · · , πGd) .

The distribution π is normalized, stationary (you should check this) and furthermore
we have

lim
n→∞

1

n

n∑
k=1

P k(i, j) = π(k)

since the time spend in state k is asymptotically equal to 1
d
πGl(k).

At this point we can also repeat, word for word, the argument of the Theorem
2.3.11 of previous section and obtain
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Theorem 2.4.1 Assume that Xn is irreducible of period d. Then with probability 1
we have

lim
n→∞

1

n

n−1∑
k=0

1{Xn=j} = π(j) .

Moreover if τ (j) the first return time to j

π(j) =
1

E[τ (j)|X0 = j]
.

In particular for any initial distribution µ we have

lim
n→∞

1

n

n−1∑
k=0

µP k(j) = π(j) .

2.5 Decomposition of state space and transient be-

havior

In this section we drop the assumption of irreducibility.
We note that first that the communication relation i↔ j is an equivalence rela-

tion, i.e. it is reflexive (i↔ i), symmetric ( i↔ j implies j ↔ i) and transitive (i↔ j
and j ↔ l implies i↔ l). Using this equivalence relation we can decompose the state
space S into mutually disjoint communication classes.

We will distinguish between two types of communication classes. We say that a
communication class C ⊂ S is transient if there exists i ∈ C and j ∈ S \ C and i ∈ C
such that P (i, j) > 0. Otherwise we call the communication class closed. If Xn start in
a closed class C then Xn never leaves C. On the other hand if Xn starts in a transient
class then Xn will eventually exit the transient class.

If the Markov chain has r recurrent classes R1, · · ·Rr and t transient classes T1, · · ·Tt
then, after reordering the states we can put the transition matrix in the form

P =



P1

P2 0
P3 0

0
. . .

Pk
S Q


(2.10)

where Pi gives the transition within the class Ri, Q the transition between the transient
classes and S the transistion from the transient classes into the recurrent classes.
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It is easy to see that P n has the form for some Sn

P n =



P n
1

P n
2 0

P n
3 0

0
. . .

P n
k

Sn Qn


Example 2.5.1 (Random walk with absorbing boundary conditions, cont’d)
The Markov chain has three classes, 2 closed ones {0}, {N} and 1 transient one
{1, · · · , N − 1} (of period 2) We can write P as with N = 5 and the states ordered as
0, 5, 1, 2, 3, 4

P =


1 0 0 0 0 0
0 1 0 0 0 0

1/2 0 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 1/2 0 0 1/2 0

 (2.11)

Suppose i belongs to transient class Tl, then after allowing for some time for the
state to access a state which can actually exits Tl, i can exit Tl. Since Tl is finite we
can find a time k and θ < 1such that

P{Xk ∈ Tl|X0 = i} ≤ θ , for all i ∈ Tl

This implies that P{Xnk ∈ Tl|X0 = i} ≤ θn and so the Markov chain cannot stay in a
transient class forever. So if i and j belong to transient classes we have

lim
n→∞

P n(i, j) = 0 .

On the other hand if i ∈ Cl belong to a class class, then the long-time behavior of
Xn is entirely determined by the transition matrix of Pl restricted to the closed class Cl
to which i belongs. Suppose πCl is the unique stationary distribution for the Markov
chain restricted to Cl, then for i, j ∈ Cl we have

lim
n→∞

1

n

n∑
k=1

P k(i, j) = πCl(j)

If i belong to a closed class and j belongs to either another closed class or a transient
class then P n(i, j) = 0 for all n.
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Finally if i belong to a transient class then i will eventually reach a closed class and
never leaves. One question we may ask is how long does it take to exit a transient class?
If there are several closed classes then one might also ask what are the probabilities to
be absorbed in one or another class. We now answer these 2 questions.

The matrix Q in (2.10) is called a substochastic matrix, i.e., a matrix with non-
negative entries whose row sums are less than or equal to 1. We have seen that
Qn(i, j)→ 0 for all i, j and thus all eiegenvalues of Q have absolute values strictly less
than 1. Therefore I −Q is an invertible matrix and we can define

M = (I −Q)−1

We give next a probabilistic interpretation of the matrix M . Let i be a transient state
and consider the random variables Y (i) the total number of visits to i, i.e.,

Y (i) =
∞∑
n=0

I{Xn=i} .

Since i is transient Y (i) < ∞ with probability 1. Suppose j is another transient state
and X0 = j. Then we have

E[Y (i) |X0 = j] = E

[
∞∑
n=0

I{Xn=i} |X0 = j

]

=
∞∑
n=0

P {Xn = i |X0 = j}

=
∞∑
n=0

P n(i, j) .

That is

E[Y (i) |X0 = j] = I(i, j) + P (i, j) + P 2(i, j) + · · ·
= I(i, j) +Q(i, j) +Q2(i, j) + · · ·

But we have
(I + P + P 2 + · · ·P n)(I − P ) = I − P n+1 ,

and thus

M = (I − P )−1 =
∞∑
n=0

P n .

There M(j, i) is simply the expected number of visits to i if X0 = j.
We summarize this discussion in
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Proposition 2.5.2 Let j be a transient state and let Tabs to be the time until the
Markov chain reaches some closed class. Then we have

E[Tabs|X0 = j] =
∑
i

M(j, i) .

where M = (I −Q)−1.

Example 2.5.3 (Random walk with absorbing boundary conditions, cont’d)
From (2.11) we have

Q =


0 1/2 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 0

 , M = (I−Q)−1 =


1.6 1.2 0.8 0.4
1.2 2.4 1.6 0.8
0.8 1.6 2.4 1.2
0.4 .8 1.2 1.6

 (2.12)

and thus the expected time until absorption are 4 for states 1 and 4 and 6 for states 2
and 3.

This technique can also be used if we want to compute the expected number of
steps that an irreducible Markov chain needs to reach one state j from a state i, i.e.,
E[τ (i)|X0 = j]. First write the transition matrix in the block form

P =

(
P (i, i) R
S Q

)
(2.13)

Since the first visit to j starting from i does not depend on the matrix element P (j, k)
we can modify the transition matrix P such as to make j an absorbing state without
changing the distribution of τ (j). That is we set

P̂ =

(
1 0
S Q

)
.

For the Markov chain with transition matrix P̂ , all states except j now form a transient
class and so we can apply Proposition 2.5.2 and obtain

Proposition 2.5.4 Let Xn be an irreducible Markov chain. We have

E[τ (i)|X0 = j] =
∑
i

M(j, i) .

where M = (I −Q)−1 and Q is given in (2.13).
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Example 2.5.5 (Random walk with reflecting boundary conditions, cont’d)
Suppose we have reflecting boundary conditions N = 5, and we want to compute

E[τ (1)|X0 = i] .

The transition matrix is

P =


0 1 0 0 0 0

1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 1 0

 (2.14)

To compute E[τ (1)|X0 = 1] = π(1)−1 we need the stationary distribution which is
π =

(
1
10
, 2

10
, 2

10
, 2

10
, 2

10
, 1

10

)
To compute the other return times we have

Q =


0 1/2 0 0 0

1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 1 0

 , M = (I −Q)−1 =


2 2 2 2 1
2 4 4 4 2
2 4 6 6 3
2 4 6 8 4
2 4 6 8 5


(2.15)

and so the expected return times to 1 are 10, 9, 16, 21, 24, 25 respectively

Let us suppose now that there exists at least two different closed classes and we ask
the question: starting in a transient state j what is the probability that the Markov
chain ends up in a particular closed class. To answer this question we can assume,
without loss of generality, that every closed class is an absorbing state r1, · · · rk and
that we transient states t1, · · · , ts. By reordering the states we have

P =

(
I 0
S Q

)
Let A(ti, rj) be the probability that the chain starting at ti eventually ends up in state
rj and we also set α(ri, ri) = 1 and α(ri, rj) = 0 if i 6= j. We condition on the first step
of the Markov chain

A(ti, rj) = P {Xn = rj eventually |X0 = ti}
=

∑
l∈S

P {X1 = l|X0 = ti}P {Xn = rj eventually |X1 = l}

=
∑
l∈S

P (ti, l)A(l, rj) = P (ti, rj) +
∑
tk

P (ti, tk)A(tk, rj) . (2.16)
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Let A be the s× k matrix with entries A(ti, rj), then (2.16) can be written in matrix
form as

A = S +QA

or
A = (I −Q)−1S = MS .

Example 2.5.6 (Random walk with absorbing boundary conditions, cont’d)
From (2.11) and (2.12) we have

A = MS =


1.6 1.2 0.8 0.4
1.2 2.4 1.6 0.8
0.8 1.6 2.4 1.2
0.4 .8 1.2 1.6




1/2 0
0 0
0 0
0 1/2

 =


.8 .2
.6 .4
.4 .6
.2 .8


For example from state 2 the probability to be absorbed in 0 is .6, and so on....

Example 2.5.7 (Gambler’s ruin). Let us consider the random walk with absorbing
boundary conditions on {0, · · · , N}. Let α(j) ≡ A(j,N) the probability that the walker
starting at j reaches N before reaching 1. Clearly we have α(0) = 0 and α(N) = 1.
Let us condition on the first steps and we obtain

α(j) = (1− p)α(j − 1) + pα(j + 1) .

That is we have a systems of second order difference equations for the N −1 unknowns
α(j). This equations can viewed as a discretization of the linear second order equation
ay′′ + by′ + cy = 0 and guided by this we solve this equation by lookin at solutions of
the form α(j) = βj. This gives the equation

β = (1− p) + pβ2

whose solutions are 1−p
p

and 1. If p 6= 1
2

then the general solutions is

α(j) = c1 + c2

(
1− p
p

)j
.

Using the boundary conditions we find

α(j) =
1−

(
1−p
p

)j
1−

(
1−p
p

)N
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For p = 1
2

we have only one solution β = 1, and inspired by differential equations we
try solutions of the form jβj = j which is indeed a solution. For p = 1/2 the genera
solution is

α(j) = c1 + c2j

and using the boundary conditions we find

α(j) =
j

N
.

Note that for p ≤ 1
2

we have limN→∞ α(j) = 0 and this says that a gambler with fixed
resources j who plays a game in which he wins with probability p has a very small
probability to beat a house with large resources N . If p > 1

2
then

lim
N→∞

α(j) = 1−
(

1− p
p

)j
> 0 ,

and thus there is a postive probability the gambler will never loses all his money and
will be able to play forever.

It is also instructive to compute the time until absorption, T , for p = 1/2, i.e.,
the number of (fair) games that a gambler with resources j can play before losing (or
winning). To do this let us define

G(j) = E[T |X0 = j] .

Clearly we have G(0) = G(N) = 0. Let us condition on the first step then we obtain

G(j) = 1 +
1

2
G(j − 1) +

1

2
G(j + 1) , j = 1, · · ·N − 1

This an inhomogeneous second order linear difference equation and an educated guess
is to try for the particular solution G(j) = aj2 which yields a = −1. Therefore the
general solution has the form

G(j) = c1 + c2j − j2

and using the boundary conditions we find

E[T |X0 = j] = j(N − j) .
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2.6 Reversible Markov chains

Let us consider a Markov chain with transition probabilities P (i, j) and stationary
distribution π(i). The equation for π is

π(i) =
∑
j

π(j)P (j, i) ,

which we can rewrite as ∑
j

π(i)P (i, j) =
∑
j

π(j)P (j, i) . (2.17)

It is useful to interpret this equation as balance equation. Let us set

J(i, j) ≡ π(i)P (i, j)

and we can interpret J(i, j) as the probability current from i to j. The equation
(2.17) means that ∑

i

J(i, j) =
∑
j

J(j, i) , (2.18)

i.e., to be stationary the total probability current from i must be equal to the total
probability current into i.

A stronger condition for stationarity can be expressed in terms of the balance
between the currents J(i, j) and this called detailed balance.

Definition 2.6.1 A Markov chain Xn satisfies detailed balance if there exists π(i) ≥ 0
with

∑
i π(i) = 1 such that for all i, j we have

π(i)P (i, j) = π(j)P (j, i) . (2.19)

This means that for every pair i, j the probability currents J(i, j) and J(j, i) balance
each other. Clearly (2.19) is a stronger condition than (2.17) and thus we have

Lemma 2.6.2 If the Markov chain satisfies detailed balance for a probability distribu-
tion π then π is a stationary distribution.

But it is easy to see that detailed balance is a stronger condition than stationarity.
The property of detailed balance is often called (time)-reversibility since we have

Lemma 2.6.3 Suppose the Markov chain Xn satisfies detailed balance and assume that
the initial distribution is the stationary distribution π. Then for any sequnce of states
i0, · · · in we have

P {X0 = i0 , X1 = i1 , · · · , Xn = in} = P {X0 = in , X1 = in−1 , · · · , Xn = i0} (2.20)
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Proof: Using the detailed balance equation repeatedly we have

P {X0 = i0 , X1 = i1 , · · · , Xn = in} = π(i0)P (i0, i1)P (i1, i2) · · ·P (in−1, in)

= P (i1, i0)π(i1)P (i1, i2) · · ·P (in−1, in)

= P (i1, i0)P (i2, i1)π(i2) · · ·P (in−1, in)

· · ·
= P (i1, i0)P (i2, i1) · · · π(in−1)P (in−1, in)

= P (i1, i0)P (i2, i1) · · ·P (in, in−1)π(in)

= P {X0 = in , X1 = in−1 , · · · , Xn = i0}

The next result is very easy and very useful.

Proposition 2.6.4 Suppose Xn is a Markov chain with state space S and with a sym-
metric transition matrix, i.e, P (i, j) = P (j, i). Then Xn satisfies detailed balance with
π(j) = const = 1/|S|, i.e., the stationary distribution is uniform on S.

Proof: obvious.

Example 2.6.5 Let us consider the random walk on the hypercube {0, 1}m. The
state space

S = {0, 1}m = {σ = (σ1, · · · , σm) ; σi ∈ {0, 1}}
To define the move of the random walk, just pick one coordinate j ∈ {1, · · · ,m} and
flip the jth coordinate, i.e., σj → 2σj − 1. We have thus

P (σ, σ′) =

{
1
m

if σ and σ′ differ by one coordinate
0 otherwise

Clearly P is symmetric and thus π(σ) = 1/2m.

Example 2.6.6 Let us consider a simple random walk on the graph G = (E, V )
with the transition probabilities p(v, w) = 1

deg(v)
. Let us check that this Markov chain

is satifies detailed balance with the unnormalized µ(v) = deg(v). Indeed we have
P (v, w) > 0 if and only if P (w, v) > 0 and thus if P (v, w) > 0 we have

µ(v)P (v, w) = deg(v)
1

deg(v)
= 1 = µ(w)P (w, v) .

This is slightly easier to verify that the stationary equation πP = π. After normaliza-
tion we find π(v) = deg(v)/2|E|.
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For example for the simple random walk on {0, 1, · · · , N} with reflecting boundary
conditions we obtain in this way

π =

(
1

2N
,

2

2N
, · · · , 1

2N

)
.

Example 2.6.7 (Network) The previous example can be generalized as follows. For
a given graph G = (E, V ) let us assign a positive weight c(e) > 0 to each edge
e = {v, w}, that is we choose numbers c(v, w) = c(w, v) with c(v, w) = 0 if v and
w are not connected by an edge. If the transition probabilities are given by

P (v, w) =
c(v, w)

c(v)
, with c(v) =

∑
w

c(v, w) ,

then it is easy to verify that the Markov chain satisfies detailed balance with

π(v) =
c(v)

cG
, with cG =

∑
v

c(v) .

Example 2.6.8 (Birth-Death Processes) Let us consider a Markov chain on the
state space S = {0, · · · , N} with transition probabilities

P (j, j) = rj , j = 0, · · · , N ,

P (j, j + 1) = pj , j = 0, · · · , N1 ,

P (j, j − 1) = qj , j = 1, · · · , N ,

and all the other P (i, j) vanish. This is called a birth and death process since the
only possible transition are to move up or down by unit or stay unchanged.

These Markov chains always satisfy detailed balance. Indeed the non trivial detailed
balance conditions are

π(j)pj = π(j + 1)qj+1 , j = 0, · · · , N − 1 .

and this can be solved recursively. We obtain

π(1) = π(0)
p0

q1

π(2) = π(1)
p1

q2

= π(0)
p0p1

q1q2

...

π(N) = π(0)
p0p1 · · · pN−1

q1q2 · · · qN−1
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and with normalization

π(j) =

∏j
k=1

pk−1

qk∑N
l=0

∏l
k=1

pk1
qk

For example the Ehrenfest urn in Example 2.2.8 model has

pj =
N − j
N

, qj =
j

N

and thus we obtain

π(j) = π(0)
N
N
N−1
N
· · · N−(j−1)

N
1
N

2
N
· · · j

N

= π(0)

(
N

j

)
and the normalization is

∑N
j=0

(
N
j

)
= 2N .

2.7 Monte-Carlo Markov chains

Suppose you are given a certain probability distribution π on a set S and you goal is to
generate a sample from this distribution. The Monte-Carlo Markov chain method
consists in constructing an irreducible Markov chain Xn whose stationary distribution
is π. Then to generate π one simply runs the Markov chains Xn long enough such that
it is close to its equilibrium distribution. It turns out that using the detailed balance
condition is a very useful tool to construct the Markov chain in this manner.

A-priori this method might seems an unduly complicated way to sample from π.
Indeed why not simply simulate from π directly using one of the method of Section 1?
To dispel this impression let us consider some concrete examples.

Example 2.7.1 (Proper q-coloring of a graph) Let G = (E, V ) be a graph. A
proper q-coloring of a graph consist of assigning to each vertex v of the graph one
of q colors subject to the constraint that if 2 vertices are linked by an edge they
should have different colors. Let S ′ be the set of all such proper q-coloring which is a
subset of S = {1, · · · , q}V . Let us denote the elements of S by σ = {σ(v)}v∈V with
σ(v) ∈ {1, · · · , q}. Let π be the uniform distribution on all such proper coloring, i.e.,
π(σ) = 1/|S ′| for all σ ∈ S ′. Even for moderately complicated graph it can be very
difficult to compute to |S ′|!

A Monte-Carlo method can be used to generate π even without an explicit knowl-
edge of |S ′|. Suppose Xn = σ, then the transition probabilites are generated by the
algorithm

(i) Choose a vertex v of at random and choose a color a at random.

(ii) Set σ′(v) = a and σ′(w) = σ(w) for w 6= v.
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(iii) If σ′ is a proper q-coloring then set Xn+1 = σ′. Otherwise set Xn = σ.

The transition probabilities are given by

P (σ, σ′) =
1

q|V |
if σ and σ′ differ at exactly one vertex

P (σ, σ′) = 0 if σ and σ′ differ at more than one vertex

P (σ, σ) = 1−
∑
σ′

P (σ, σ′)

Note that |S ′| does not enter in the transition probabilities. Note further that P (σ, σ)
is not known explicitly either but is also not used to run the algorithm.

In order to check that the uniform distribution is stationary for this Markov chain
it is enough to note that P is a symmetric matrix. Indeed if one can change σ into σ′

by changing one color then one can do the reverse transformation too.

Let us considering another example which is a fairly classical optimization problem.

Example 2.7.2 (Knapsack problem). Suppose you own m books and the ith book
has weight wi lb and is worth $ vi. In your knapsack you can put at most a total of b
pounds and you are looking to pack the most valuable knapsack possible.

To formulate the problem mathematically we introduce

w = (w1, · · ·wm) ∈ Rm , weight vector

v = (v1, · · · vm) ∈ Rm , value vector

σ = (σ1, · · ·σm) ∈ {0, 1}m , decision vector

where we think that σi = 1 is the ith item is in the knapsack. The state space is

S ′ = {σ ∈ {0, 1}m ; σ · w ≤ b}

and the optimization problem is

Maximize v · σ subject to σ ∈ S ′ .

As a first step we discuss the problem of generating a random element in S ′ using
a simple algorithm. If Xn = σ then

(i) Choose j ∈ {1, · · ·m} at random.

(ii) Set σ′ = (σ1, · · · , 1− σj, · · · , σm).

(iii) If σ′ ∈ S ′, i.e., if σ′ · v ≤ b then let Xn+1 = σ′. Otherwise Xn+1 = σ.
In other words, choose a random book. If it is in the sack already remove it. If it

is not in the sack add it provided you do not exceed the the maximum weight. Note
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that the Markov chain Xn is irreducible, since each state communicates with the state
σ = (0, · · · , 0). It is aperiodic except in the uninteresting case where

∑
iwi ≤ b.

Finally the transition probabilities are symmetric and thus the uniform distribution
the unique stationary distribution.

In the knapsack problem we want to maximize a function f on the state space. One
possible algorithm would be to generate an uniform distribution on the state space and
then to look for the maximum value of the function. But it would be a better idea to
sample from a distribution which assign higher probabilities to the state with a high
value of f .

Let S be the state space and let f : S → R be a function. It is convenient to
introduce the probability distributions define for β > 0 by

πβ(i) =
eβf(i)

Zβ
with Zβ =

∑
j∈S

eβf(j) .

Clearly πβ assign higher weights to the the i with bigger values of f(i). Let us define

S∗ =

{
i ∈ S ; f(i) = f ∗ ≡ max

j∈S
f(j)

}
.

If β = 0 then π0 is simply the uniform distribution on S. For β →∞ we have

lim
β→∞

πβ(i) = lim
β→∞

eβ(f(i)−f∗)

|S∗|+
∑

j∈S\S∗ e
β(f(j)−f∗) =

{ 1
|S∗| if j ∈ S∗

0 if j /∈ S∗ ,

i.e., for large β πβ is concentrated on the global maxima of f .
A fairly general method to generate a distribution π on the state space S is given

by the Metropolis algorithm. This algorithm assumes that you already know how
to generate the uniform distribution on S by using a symmetric transition matrix Q.

Algorithm 2.7.3 (Metropolis algorithm with proposal matrix Q) Let Q be a
symmetric transition matrix. If Xn = i then

(i) Choose Y ∈ S according to Q, i.e.,

P{Y = j |Xn = i} = Q(i, j) .

(ii) Define the acceptance probability

α = min

{
1 ,
π(Y )

π(i)

}
.

(iii) Accept Y with probability α. That is generate a random number U . If U ≤ α
then Xn+1 = Y (i.e., accept the move) and if U > α then Xn+1 = Xn (i.e., reject the
move).
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The general case with non-symmetric proposal matrix is called the Metropolis-
Hastings algorithm and is discussed in Exercise ??. We have

Proposition 2.7.4 Suppose Q is an irreducible transition probability matrix on S and
suppose π is a probability distribution on S with π(i) > 0. Then the Metropolis algo-
rithm defines an irreducible Markov chain on S which satisfies detailed balance with
stationary distribution π.

Proof: Let P (i, j) be the transition probabilities for the Metropolis Markov chain. Then
we have

P (i, j) = Q(i, j)α = Q(i, j) min

{
1 ,

π(j)

π(i)

}
.

Since π(i) > 0 the acceptance probability α never vanishes. Thus if P (i, j) > 0
whenever Q(i, j) > 0 and thus P is irreducible if Q is.

In order to check the reversibility we note that

π(i)P (i, j) = Q(i, j)π(i) min

{
1,
π(j)

π(i)

}
= Q(i, j) min {π(i) , π(j)}

and the r.h.s is symmetric in i, j and thus π(i)P (i, j) = π(j)P (j, i).

Note that only the ratio π(i)/pi(j) are needed to run the algorithm, in particular
we do not need the normalization constant.

Example 2.7.5 (Knapsack problem) Let us consider the probability distribution

πβ(σ) = eβv·σZβ .

The normalization constant Zβ =
∑

σ∈S′ e
βv·σ is almost always impossible to compute.

However we have
π(σ′)

π(σ)
= eβv·(σ

′−σ)

which does not involve Zβ.
For this distribution we take as the Q matrix constructed in Example 2.7.2 and the

Metropolis algorithm is

If Xn = σ then

(i) Choose j ∈ {1, · · ·m} at random.

(ii) Set σ′ = (σ1, · · · , 1− σj, · · · , σm).

(iii) If σ′ 6∈ S ′, i.e., then Xn+1 = σ.

(iv) If σ′ ∈ S ′, i.e., then let

α = min

{
1,
π(σ′)

π(σ)

}
= min

{
1, eβv·(σ

′−σ)
}

=

{
e−βvj if σj = 1

1 if σj = 0
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(v) Generate a random number U , If U ≤ α then Xn+1 = σ′. Otherwise Xn+1 = σ.

If you can add a book to your knapsack you always do while you remove a book with
a probability which is exponentially related to the weight of the book.

Another algorithm which is widely used for Monte-Carlo Markov chain is the
Glauber algorithm which appear in the literature under a variety of other names
such as Gibbs sampler in statistical applications, logit rule in economics and social
sciences, heat bath in physics, and undoubtedly under various other names.

The Glauber algorithm is not quite as general as the Metropolis algorithm. We
assume that the state space S has the following structure

S ⊂ ΩV

where both Ω and V are finite sets. For example S ⊂ {0, 1}m in the case of the
knapsack problem or S ⊂ {1, · · · , q}V for the case of the proper q-coloring of a graph.
We denote by

σ = {σ(v)}v∈V , σ(v) ∈ Ω .

the elements of S.
It is useful to introduce the notation

σ−v = {σ(w)}w∈V,w 6=v

and we write
σ = (σ−v, σ(v)) .

Algorithm 2.7.6 (Glauber algorithm) Let π be a probability distribution on S ⊂
ΩV . Extend π to ΩV by setting π(σ) = 0 if σ ∈ ΩV \ S. If Xn = σ then

(i) Choose v ∈ V at random.

(ii) Replace σ(v) by a new value a ∈ Ω (provided (σ−v, a) ∈ S) with probability

π(σ−v, a)∑
b∈Ω π(σ−v, b)

.

The irreducibility of the algorithm is not guaranteed a-priori and needs to be
checked on a case-by-case basis. We have

Proposition 2.7.7 The Glauber algorithm defines a Markov chain on S which satisfies
detailed balance with stationary distribution π.
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Proof: The transition probabilities are given by

P (σ, σ′) =
1

|V |
π(σ−v, σ

′(v))∑
b∈Ω π(σ−v, b)

if σ−v = σ′−v for some v

P (σ, σ′) = 0 if σ−v 6= σ′−v for all v

P (σ, σ) = 1−
∑
σ′

P (σ, σ′)

To check detailed balance we note that if P (σ, σ′) 6= 0

π(σ)P (σ, σ′) =
π(σ)π(σ′)∑
b∈Ω π(σ−v, b)

,

and this is symmetric in σ and σ′.

Example 2.7.8 (Ising Model on a graph) Let G = (E, V ) be a graph and let
S = {−1, 1}V . That is to each vertex assign the value ±1, you can think of a magnet
at each vertex pointing either upward (+1) or downward −1). To each σ ∈ S we assign
an ”energy” H(σ) given by

H(σ) = −
∑

e=(v,w)∈E

σ(v)σ(w) .

The energy σ is minimal if σ(v)σ(w) = 1 i.e., if the magnets at v and w are aligned.
Let us consider the probability distribution

πβ(σ) =
e−βH(σ)

Zβ
, Zβ =

∑
σ

e−βH(σ) .

The distribution πβ is concentrated around the minima of H(σ). To describe the
Glauber dynamics note that

H(σ−v, 1)−H(σ−v,−1) = −2
∑

w ;w∼v

σ(w)

and this can be computed simply by looking at the vertices connected to v and not at
all the graph. So the transition probabilities for the Glauber algorithm are given by
picking a vertex at random and then updating with probabilities

π(σ−v,±1)

π(σ−v, 1) + π(σ−v,−1)
=

1

1 + e±β[H(σ−v ,1)−H(σ−v ,−1)]
=

1

1 + e∓2β
P
w ;w∼v σ(w)

.
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By comparison for the Metropolis algorithm we pick a vertex at random and switch
σ(v) to −σ(v) and accept the move with probability

min

{
1,
π(σ−v,−σ(v))

π(σ−v, σ(v))

}
= min

{
1,
π(σ−v,−σ(v))

π(σ−v, σ(v))

}
= min

{
1, e2β

P
w ;w∼v σ(w)σ(v)

}
.


