
Week 1: Probability models and counting

Part 1: Probability model

Probability theory is the mathematical toolbox to describe phenomena or experiments
where randomness occur. To have a probability model we need the following ingredients

• A sample space S which is the collection of all possible outcomes of the (random)
experiment. We shall consider mostly finite sample space S.

• A probability distribution. To each element i ∈ S we assign a probability p(i) ∈ S.

p(i) = Probability that the outcome i occurs

We have
0 ≤ p(i) ≤ 1

∑
i∈S

p(i) = 1 .

By definition probabilities are nonnegative numbers and add up to 1.

• An event A is a subset of the sample space S. It describes an experiment or an
observation that is compatible with the outcomes i ∈ A. The probability that A
occurs, P (A), is given by

P (A) =
∑
i∈A

p(i) .

Example: Thoss three (fair) coins and record if the coin lands on tail (T) or head (H).
The sample space is

S = {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}

and has 8 = 23 elements. For fair coins it is natural assign the probability 1/8 to each
outcome.

P (HHH) = P (HHT ) = · · · = P (TTT ) = 1/8

An example of an event A is that at least two of the coins land on head. Then

A = {HHH,HHT, THH,HHT} P (A) = 1/2 .

The basic operations of set theory have a direct probabilistic interpretation:
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• The event A ∪ B is the set of outcomes wich belong either to A or to B. We say
that P (A ∪B) is the probability that either A or B occurs.

• The event A ∩B is the set of outcomes which belong to A and to B. We say that
P (A ∪B) is the probability that A and B occurs.

• The event A \ B is the set of outcomes which belong to A but not to B. We say
that P (A \B) is the probability that A occurs but B does not occurs.

• The event A = S \A is the set of outcomes which do not belong to A. We say that
P (A) is the probability that A does not occur.

We have the following simple rules to compute probability of events. Check them!

Theorem 1. Suppose A and B are events. Then we have

1. 0 ≤ P (A) ≤ 1 for any event A ⊂ S.

2. P (A) ≤ P (B) if A ⊂ B.

3. P (A) = 1− P (A)

4. P (A ∪B) = P (A) + P (B) if A and B are disjoint.

5. P (A ∪B) = P (A) + P (B)− P (A ∩B) for general A and B.

Proof. We let the reader check 1. to 4. For 5. we can reduce ourselves to 4. by writing
A ∪B as the union of two disjoint event, for example

A ∪B = A ∪ (B \ A) .

We do have, by 4.
P (A ∪B) = P (A) + P (B \ A) (1)

On the other hand we can write B has the union of two disjoint sets (the outcomes in B
which are also in A or not).

B = (B ∩ A) ∪ (B \ A)

and so by 4.
P (B) = P (B ∩ A) + P (B \ A) (2)

So by combining (1) and (2) we find 5.

Example: Tossing three coins again let A be the event that the first toss is head while
B is the event that the second toss is tail. Then A = {HHH,HHT,HTH,HTT},

2



and B = {HTH,HTT, TTH, TTT}, A ∩ B = {HTH,HTT}. We have P (A ∪ B) =
P (A) + P (B)− P (A ∩B) = 1/2 + 1/2− 1/4 = 3/4.

Odds vs probabilities. Often, especially in gambling situations the randomness of the
experiment is expressed in terms of odds rather than probabilities. For we make a bet at
5 to 1 odds that U of X will beat U of Z in next week basketball game. What is meant
is that the probability that X wins is thought to be 5 times greater than the probability
that Y wins. That is we have

p = P (X wins) = 5P (Y wins) = 5P (X looses) = 5(1− p)

and thus we have p = 5(p− 1) of p = 5/6. More generally we have

The odds of an event A are r to s⇐⇒ P (A)

1− P (A)
=
r

s
⇐⇒ P (A) =

r/s

r/s+ 1

Uniform distribution (”Naive probabilities”). In many examples it is natural to
assign the same probability to each event in the sample space. If the sample space is S
we denote by the cardinality of S by

#S = number of elements in S

Then for every event i ∈ S we set

p(i) =
1

#S
,

and for any event A we have

p(A) =
#A

#S
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Example. Throw two fair dice. The sample space is the set of pairs (i, j) with i and j
an integer between 1 and 6 and has cardinality 36. We then obtain for example

P (Sum of the dice is 2) =
1

36
, P (Sum of the dice is 9) =

4

36
, · · ·

The birthday problem. A classical problem in probability is the following. What is
the probability that among N people at least 2 have the same birthday. As it turns out,
and at first sight maybe surprisingly, one needs few people to have a high probability of
matching birthdays. For example for N = 23 there is a probability greater than 1/2 than
at least two people have the same birthday. To compute this we will make the simplifying
but reasonable assumptions that there is no leap year and that every birthday is equally
likely.

If there are N people present, the sample space S is the set of all birthdays of the
everyone. Since there is 365 choice for everyone we have

#S = 365N

We consider the event

A = at least two people have the same birthday

It is easier to consider instead the complementary event

B = A = no pair have the same birthday

To compute the cardinality of B we make a list of the N people (the order does not
matter). There is 365 choice of birthday for the first one on the list, for the second one
on the list, there is only 364 choice of birthday if they do not have the same birthday.
Continuing in the same way we find

#B = 365× 364× 363× · · · × (365−N + 1)

and so

P (B) =
365× 364× 363× · · · × (365− (N − 1)

365N

= 1×
(

1− 1

365

)(
1− 2

365

)
×
(

1− N − 1

365

)
To compute this efficiently we recall from calculus (use L’Hospital rule to prove this) that
for any number x we have

ex = lim
n→∞

(
1 +

x

n

)n
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We take n = 365 which is a reasonably large number and take x = −1,−2, · · · . We have
the approximation (

1− j

365

)
≈ e−j/365 .

We find then

P (B) ≈ 1× e−1/365 × e−2/365 × e−(N−1)/365

= e−(1+2+···N−1)/365

= e−N(N−1)/730

by using the well-known identity 1 + 2 + · · ·N =
N(N + 1)

2
.

How many people are needed to have a probability of 1/2 of having 2 same birthday.
We have

P (B) =
1

2
≈ e−N(N−1)/730 ⇐⇒ N(N − 1) = 730 ln(2)

Even for moderately small N , N(N − 1) ≈ N2 and so we find the approximate answer

N ≈
√

730 ln(2) = 22.49

That is if there are 23 people in a room, the probability that two have the same birthday
is greater than 1/2. Similarly we find that if there are

N ≈
√

730 ln(10) = 40.99

people in the room there is a probability greater than .9 than two people have the same
birthday.
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Part 2: Combinatorics

In many problems in probability where one uses uniform distribution (many of them
related to gambling’s) one needs to count the number of outcomes compatible with a
certain event. In order to do this we shall need a few basic facts of combinatorics

Permutations: Suppose you have n objects and you make a list of these objects. There
are

n! = n(n− 1)(n− 2) · · · 1

different way to write down this list, since there are n choices for the first on the list, n−1
choice for the second, and so on.

The number n! grows very fast with n. Often it is useful to have a good estimate of
n! for large n and such an estimate is given by Stirling’s formula

Stirling′s formula n! ∼ nne−n
√

2πn

where the symbols an ∼ bn means here that lim
n→∞

an
bn

= 1

Combinations: Suppose you have a group of n objects and you wish to select a j of the
n objects. The number of ways you can do this defines the binomial coefficients(

n

j

)
= # of ways to pick j objects out of n objects

and this pronounced ”n choose j”.

Example: The set U = {a, b, c} has 3 elements. The subsets of U are

∅ , {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}

and there are
(
3
0

)
= 1 subset with 0 elements,

(
3
1

)
= 3 subset with 1 elements,

(
3
2

)
= 3

subset with 2 elements, and
(
3
3

)
= 1 subset with 3 elements.

Formulas involving binomial coefficients and ”Storyproofs”: There are many
relations between binomial coefficients. One can prove these relation using the formula
for the coefficients derived a bit later. A very elegant alternative is often to use the
meaning of the coefficients and to make up a ”story”. We give a few example
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1. We have the equality (
n

k

)
=

(
n

n− k

)
(3)

For example we have
(
10
6

)
=
(
10
4

)
.

To see why this is true think of forming a group of k people out of n people. You
can do by selecting k people with

(
n
k

)
choices. Alternatively you can for the group

by selecting all the people who are not among the group, that is you select n − k
people not in the group and there

(
n

n−k

)
ways of doing this.

2. Recursion relation for the binomial coefficients:and Pascal triangle: There
is a simple recursion relation for the binomial coefficients

(
n
j

)
in terms of the binomial

coefficients
(
n−1
k

)
: (

n

j

)
=

(
n− 1

j

)
+

(
n− 1

j − 1

)
(4)

for 0 < j < n. To use this recursion one needs to know that
(
n
0

)
=
(
n
n

)
= 1.

To see why the formula (4) holds think of a group of n people. The left hand side
of (4) is the number of ways to form groups of j people out of those n people. Now
let us pick one distinguished individual among the n, let us say we pick Bob. Then(
n−1
j

)
is the number of way to choose a group of j people which do not include Bob

(pick j out of the remaining n − 1) while
(
n−1
j−1

)
is the number of ways to pick a

group of j people which does include Bob (pick Bob and then pick j − 1 out of the
remaining n− 1. Adding these two we obtain the right hand side of (4) .

3. We have the relation

k

(
n

k

)
= n

(
n− 1

k − 1

)
(5)

To with this holds imagine selecting a team of k (out of n) and selecting also a
captain for the team. Then you can either pick first the team ( nchoosek ways)
and then selecting the captain (k choices). This gives the left hand side of (5).
Alternatively you can pick first the captain (n choices) and then select the rest of
the team ( n− 1choosek − 1 ways).This gives the right hand side of (5).

Formula for the binomial coefficients To find an explicit formula for
(
n
j

)
we note first

that
n(n− 1) · · ·n− (j − 1)

is the number of ways to write an ordered list of j objects out of n objects since there are
n choices for the first one on the list, n − 1 choices for the second one and so on. Many
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of these lists contain the same objects but arranged in a different order and there are j!
ways to write a list of the same j objects in different orders. So we have(

n

j

)
=
n(n− 1) · · ·n− (j − 1)

j!

which we can rewrite as (
n

j

)
=

n!

j!(n− j)!

Poker hands. We will compute the probability of certain poker hands. A poker hands
consists of a 5 randomly chosen cards out of a deck of 52. So we have

Total number of poker hands =

(
52

5

)
= 2598960

Four of a kind: This hands consists of 4 cards of the same values (say 4 seven). To
compute the probability of a four of a kinf note that there are 13 choices for the choice
of values of the four of a kind. Then there are 48 cards left and so 48 choice for the
remaining cards. So

Probability of a four of a kind =
13× 48(

52
5

) =
624

2598960
= 0.00024

Full house: This hands consists three cards of the same value and two cards of an another
value (e.g. 3 kings and 2 eights). There are 13 ways to choose the value of three of a kind
and once this value is chose there is

(
4
3

)
to select the three cards out of the four of same

value. There are then 12 values left to choose from for the pair and there
(
4
2

)
to select the

the pair. So we have

Probability of a four of a full house =
13×

(
4
3

)
× 12×

(
4
2

)(
52
5

) =
3744

2598960
= 0.0014

So the full house is 6 times as likely as the four of a kind.

Three of a kind: There are 13
(
4
3

)
ways to pick a three of kind. There are then 48 cards

left from which to choose the remaining last 2 cards and there are
(
48
2

)
ways to do this.

But we are then also allowing to pick a pair for the remaining two cards which would give
a full house. Therefore we have

Probability of a three of a kind =
13×

(
4
3

)
×
(
48
2

)
− 13×

(
4
3

)
× 12×

(
4
2

)(
52
5

)
8



Another way to compute this probability is to note that among the 48 remaining cards
we should choose two different values (so as not to have a pair) and then pick a card of
that value. This gives

Probability of a three of a kind =
13×

(
4
3

)
×
(
12
2

)
×
(
4
1

)
×
(
4
1

)(
52
5

)
Either way this gives a probability 54912

2598960
= 0.0211

Keno. This is a popular form of lottery played in casinos as well as often in bars and
restaurants. For example in Massachusetts, the numbers are drawn every four minutes
and appear on screens.

The game is played with the numbers {1, 2, 3, · · · , 80} and the casino randomly selects
20 numbers out of those. Clearly there are

(
80
20

)
choices. The player plays by selecting m

numbers out of 80. The number m varies and typically the game allows for the player to
choose m (for example in Massachusetts any m with 1 ≤ m ≤ 12 is allowed). One say
that a player gets a catch of k if k of his m numbers matches some of the 20 numbers
selected by the casino.

Let us take m = 8 and compute the probability of a catch of k in this case. Think
now of the 80 numbers divided into two groups the 8 ”good numbers” selected by the
player and the 72 bad numbers which are not. For the player to get a catch of k, k of his
numbers must be selected by the casino from his 8 ”good numbers” and the remaining
20− k numbers are selected from the ”bad numbers”. So we find

P ( catch of k if playing 8 numbers) =

(
8
k

)(
72
k

)(
80
20

)
In general we find

P ( catch of k if playing m numbers) =

(
m
k

)(
80−m

k

)(
80
20

)
We will revisit the game of Keno later: the list of all odds and payouts as well as the the de-
tailed rules for Keno as played Massachusetts can be found at http://www.masslottery.
com/games/keno.html.
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Exercises

Exercise 1: As seen in class if there are 23 people in a room the probability of having
two people with the same birthday is more than 1/2. In our class of 40 people what is
this probability? For comparison compute the probability that somebody has the same
birthday than you in our class? Are you surprised by the result?

Exercise 2: Bob and Maria are taking a math class with final grades A, B or C. The
probability that Bob gets a B is .3 and the probability that Maria gets a B is .4. The
probability that neither gets an A but at least one gets a B is .1. What is the probability
that at least one gets a B but neither gets a C?

Exercise 3:

1. What odds should you give in favor of the following event?

(a) A card chosen at random from a 52-card deck is an ace?

(b) Exactly two heads will turn up when three coins are tossed?

2. In a horse race the odds that Romance wins are given 2 to 3 while the odds that
Downhill wins are 1 to 2. Give the odds that either Romance or Downhill wins?

Exercise 4: A six card hand is dealt from an ordinary deck of 52 cards. Find the
probability that

1. All six cards are hearts

2. There are three aces, two kings and one queen.

3. There three cards of one suit and three of another suit.

Exercise 5: Compute the probabilities to obtain the following poker hands

1. Two pairs

2. A straight flush: fives cards of the same suit in order (e.g. 6, 7, 8, 9, 10 of hearts).

3. A flush : five cards of the same suit but not in order (e.g. 3, 5,6, queen,and king of
spades).
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Exercise 6: The powerball is a popular lottery organized by the multistage lottery
association where 5 white balls are drawn out of a drum which 59 balls and one red ball is
drawn out of another drum with 35 balls. The balls are drawn without replacement and
the order in which balls are drawn does not matter. The prize of the ticket is $2 and there
are 9 ways to win given in the table below. Compute the corresponding probabilities.

Balls Prize Probabilities

5 white & 1 red Jackpot
5 white $ 1,000,000

4 white & 1 red $10,000
4 white $100
3 white $100
3 white $7

2 white & 1red $7
1 white & 1red $4

1 red $4

See http://www.powerball.com/powerball/pb_howtoplay.asp for more details.

Exercise 7: Explain with a ”story proof” why the identity(
2n

n

)
=

n∑
j=0

(
n

j

)2

holds.
Hint: Think of a group of consisting of n boys and n girls.
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